Conference Call

LIFE RISK-BASED CAPITAL (E) WORKING GROUP

Thursday, June 6, 2019

11:00 a.m. ET / 10:00 a.m. CT / 9:00 a.m. MT / 8:00 a.m. PT

ROLL CALL

Philip Barlow, Chair
District of Columbia
William Leung
Missouri

Steve Ostlund
Alabama
Rhonda Ahrens
Nebraska

Perry Kupferman
California
Seong-min Eom
New Jersey

Deborah Batista
Colorado
William Carmello
New York

Wanchin Chou
Connecticut
Andy Schallhorn
Oklahoma

Gilbert Moreau
Florida
Mike Boerner
Texas

Bruce Sartain/Vincent Tsang
Illinois
Tomasz Serbinowski
Utah

Fred Andersen/John Robinson
Minnesota

AGENDA

1. Discuss Comments Received on Proposed Changes to the Life Risk-Based Capital Instructions Recommended by the Variable Annuities Capital and Reserve (E/A) Subgroup—Philip Barlow (DC)

 - ACLI Comment Letter
 - Proposal 2019-10-L

2. Discuss Any Other Matters Brought Before the Working Group—Philip Barlow (DC)

3. Adjournment

W:\QA\RBC\LRBC\2019\Calls and Meetings\6_6_19 Call\LRBC 6-6-19 Agenda.doc
Mr. Philip Barlow
Chair – NAIC Life Risk Based Capital Working Group

Re: Exposure of 2019-10-L: Instructions for LR027 (C3 Phase 2)

Dear Mr. Barlow:

The ACLI1 is pleased to submit the following comments to the Life Risk Based Capital Working Group (Life RBC) on behalf of our member companies regarding the exposed 2019-10-L: Revisions to LR027 Instructions. We appreciate the exposure of these documents with the revisions needed to implement the Variable Annuity Framework previously adopted by the NAIC. We look forward to this new framework being implemented to establish an improved basis for the development of statutory reserve and RBC values.

With the exposure, a question was asked about a proposed modification to the Post-Tax formula, specifically, should it be revised to:

\[25\% x \{(\text{CTEA}(98) + \text{ASPA} x (1-\text{Federal Income Tax Rate})-\text{Stat Res})\}\]

After analysis, we have concluded that this proposed change in the formula is appropriate and should be adopted.

A second part of the question, following comments and discussion on the May 13 call, was whether the formulas appropriately reflect the provisions of the Federal Tax Cuts and Jobs Act. In our view they do so appropriately and need no further revision. The pre-tax formula makes broad assumptions that are applied to all companies. Specific provisions of the law such as spreading the impact of the change in laws, are company specific and cannot be easily included in a broad formula. For the post-tax formula, the company would be expected to include provisions in their modeling. As such, no additional changes are needed.

1 The American Council of Life Insurers (ACLI) advocates on behalf of 280 member companies dedicated to providing products and services that promote consumers' financial and retirement security. 90 million American families depend on our members for life insurance, annuities, retirement plans, long-term care insurance, disability income insurance, reinsurance, dental and vision and other supplemental benefits. ACLI represents member companies in state, federal and international forums for public policy that supports the industry marketplace and the families that rely on life insurers' products for peace of mind. ACLI members represent 95 percent of industry assets in the United States. Learn more at www.acli.com
We also note a new item to consider. On their May 16 call, LATF exposed a change to the Alternative Methodology to implement a process to allow parity in the mortality basis with that used for the stochastic modeling. A similar change should be made to Appendix 2 of these instructions. The following are the specific changes needed on page 28 in Appendix 2:

8. The table of GC factors that has been developed assumes male mortality at 100% of the MGDB 94 ALB table, and uses a 5-year age setback for female annuitants. Companies using the Alternative Method may use these factors, or may use the procedure described in Methodology Note C3-04 in the report “Recommended Approach for Setting Risk-Based Capital Requirements for Variable Annuities and Similar Products Presented by the American Academy of Actuaries’ Life Capital Adequacy Subcommittee to the National Association of Insurance Commissioners’ Capital Adequacy Task Force (June 2005)” to adjust for the actuary’s Prudent Best Estimate of mortality. If the company does not have a Prudent Best Estimate mortality assumption, the company may use the procedure described in Methodology Note C3-04 to adjust to the 2012 IAM as modified in VM-21 Section 11.C. Once a company uses the modified method for a block of business, the option to use the unadjusted table is no longer available for that part of its business. In applying the factors to actual inforce business, a 5-year age setback should be used for female annuitants.

We also note 2 places where the phrase “Scenario greatest present value” should be updated to “scenario reserve”:
- Page 16, A.1. line 2
- Page 17, A.4., 3rd paragraph, line 2

We look forward to the VA Framework being implemented and will be glad to answer any questions about these comments.

Very truly yours,

Brian Bayerle
Senior Actuary
202-624-2169
brianbayerle@acli.com

John Bruins
Consultant
410-991-3996
jbruins.fsa@gmail.com

cc: Dave Fleming, NAIC
Capital Adequacy (E) Task Force

RBC Proposal Form

DATE: 6/9/19

CONTACT PERSON: Dave Fleming
TELEPHONE: 816-783-8121
EMAIL ADDRESS: dfleming@naic.org
ON BEHALF OF: Life Risk-Based Capital (E) Working Group
NAME: Philip Barlow, Chair
TITLE: Associate Commissioner for Insurance
AFFILIATION: District of Columbia
ADDRESS: 1050 First Street, NE Suite 801
Washington, DC 20002

FOR NAIC USE ONLY
Agenda Item # 2019-10-L
Year 2019

DISPOSITION
[] ADOPTED
[] REJECTED
[] DEFERRED TO
[] REFERRED TO OTHER NAIC GROUP
[X] EXPOSED 4/7/19, 5/13/19
[] OTHER (SPECIFY)

IDENTIFICATION OF SOURCE AND FORM(S)/INSTRUCTIONS TO BE CHANGED

[] Health RBC Blanks
[] Fraternal RBC Blanks
[] Life RBC Blanks
[] Property/Casualty RBC Blanks
[] Health RBC Instructions
[] Fraternal RBC Instructions
[X] Life RBC Instructions
[] Property/Casualty RBC Instructions
[] OTHER

DESCRIPTION OF CHANGE(S)
Modifies the instructions for LR027, Interest Rate Risk and Market Risk and appendices, to incorporate changes needed to implement the Variable Annuities Framework.

REASON OR JUSTIFICATION FOR CHANGE **
The Variable Annuities Framework included charges to the Life Actuarial (A) Task Force and to the Variable Annuities Capital and Reserve (E/A) Subgroup (formerly the C-3 Phase II/AG 43 (E/A) Subgroup) to draft changes needed to effectuate the recommendations from the framework into Actuarial Guideline 43, the Valuation Manual section VM-21 and into the Life RBC formula. The instruction changes included in this proposal address the RBC portion of the charges.

Additional Staff Comments:
• 04-7-19: Proposal was exposed with comments due 05-7-19 (DBF)
• 05-13-19: Proposal was re-exposed with comments due 05-31-19 (DBF)

** This section must be completed on all forms.
INTEREST RATE RISK AND MARKET RISK
LR027

The following instructions for the Interest Rate Risk and Market Risk will remain effective independent of the status of the sunset provision, Section 8, of Actuarial Guideline XLVIII (AG 48) in a particular state or jurisdiction. This instruction will be considered for change once the amendment referenced in AG 48, Section 8, regarding credit for reinsurance, is adopted by the NAIC.

Basis of Factors

The interest rate risk is the risk of losses due to changes in interest rate levels. The factors chosen represent the surplus necessary to provide for a lack of synchronization of asset and liability cash flows.

The impact of interest rate changes will be greatest on those products where the guarantees are most in favor of the policyholder and where the policyholder is most likely to be responsive to changes in interest rates. Therefore, risk categories vary by withdrawal provision. Factors for each risk category were developed based on the assumption of well-matched asset and liability durations. A loading of 50 percent was then added on to represent the extra risk of less well-matched portfolios. Companies must submit an unqualified actuarial opinion based on asset adequacy testing to be eligible for a credit of one-third of the RBC otherwise needed. It should also be answered Yes if the opinion is qualified but the only reason for qualification of the opinion is because of the direction provided in Actuarial Guideline XLVIII AG 48.

Consideration is needed for products with credited rates tied to an index, as the risk of synchronization of asset and liability cash flows is tied not only to changes in interest rates but also to changes in the underlying index. In particular, equity-indexed products have recently grown in popularity with many new product variations evolving. The same C-3 factors are to be applied for equity-indexed products as for their non-indexed counterparts; i.e., based on guaranteed values ignoring those related to the index.

Cash Flow Modeling for C-3 RBC

A company may be required or choose to perform cash flow modeling to determine its C-3 RBC requirement. Because of the widespread use of increasingly well-disciplined scenario testing for actuarial opinions based upon an asset adequacy analysis involving cash flow testing, it was determined that a practical method of measuring the degree of asset/liability mismatch existed. It involves further cash flow modeling. In addition, some companies may choose to or be required to calculate part of the C-3 RBC requirement on Certain Annuities and Single Premium Life Insurance under a method using cash flow testing techniques. Refer to LR049 Exemption Test: Cash Flow Testing for C-3 RBC for determination of exemption from this cash flow testing requirement. Companies are required to calculate the C-3 RBC requirement on Variable Annuities and Similar Products as described in the instructions for line (37).

Factor-Based RBC for Reserves on contracts on Certain Annuities and Single Premium Life Insurance that were Cash Flow Modeled for Interest Rate Risk Tested for Asset Adequacy

- Factor-Based RBC
- Lines (2) though (16) include the reserves for contracts that were modeled for interest rate risk following the guidance of Appendix 1 of the instructions for more details. ½ of this factor-based amount is used in the floor determined in line (34)

The risk categories are:

(a) Low-Risk Category

The basic risk-based capital developed for annuities and life insurance in the low-risk category was based on an assumed asset/liability duration mismatch of 0.125 (i.e., a well-matched portfolio). This duration gap was combined with a possible 4 percent one-year swing in interest rates (the maximum historical interest rate swing 95 percent of the time) to produce a pre-tax factor of 0.006327. For a less well-matched portfolio, in addition to the 50 percent loading discussed above, the risk-based capital pre-tax factor reflecting the 50 percent loading discussed above is 0.009415.
(b) Medium and High-Risk Category
The factors for the medium and high-risk categories were determined by measuring the value of the additional risk from the more discretionary withdrawal provisions based on assumptions of policyholder behavior and 1,000 random interest rate scenarios. Supplementary contracts not involving life contingencies and dividend accumulations are included in the medium-risk category due to the historical tendency of these policyholders to be relatively insensitive to interest rate changes.

Additional Component for Callable/Pre-Payable Assets
Identify the amount of callable/pre-payable assets (including IOs and similar investments) not reported elsewhere in this schedule. This excludes callable/pre-payable assets supporting Reserves on Certain Annuities and Single Premium Life Insurance that were Cash Flow Tested or products included under the “Recommended Approach for Setting Risk-Based Capital Requirements for Variable Annuities and Similar Products.” This includes callable/pre-payable assets supporting other reserves and capital and surplus. The C-3 requirement after taxes is 50 percent of the excess, if any, of book/adjusted carrying value above current call price. The calculation is done on an asset-by-asset basis and reported in aggregate.

Cash Flow Testing for C-3 RBC
A company may be required or choose to perform cash flow testing to determine its RBC requirement. Because of the widespread use of increasingly well-disciplined scenario testing for actuarial opinions based upon an asset adequacy analysis involving cash flow testing, it was determined that a practical method of measuring the degree of asset/liability mismatch existed. It involves further cash flow testing. See Appendix 1 – Cash Flow Testing for C-3 RBC for details.

Specific Instructions for Application of the Formula

Lines (2) through (16)
These lines deal with Certain Annuities and Single Premium Life Insurance for which reserves were cash flow tested for asset adequacy modeled for RBC. Guaranteed Indexed separate accounts following a Class 1 investment strategy are reported as low-risk Line (2).
The fixed portion of equity-based variable products and should not be included. Guaranteed indexed separate accounts following a Class I investment strategy are reported as low-risk Line 2 and those following a Class II investment strategy are excluded. See Proposed new Risk-Based Capital Method for Separate Accounts that Guarantee an Index, June 2003.

Company source records entered in Column (3) of Lines (13), (15) and (16) should be adjusted to a pre-tax basis.

Line (17)
Should equal the sum of Lines (6) + (11) + (14) + (15). Line (16) is not included in the Line (17) total. Instead, it is included in the Line (32) total.

Lines (18) through (31)
These lines cover:
(a) The remaining company business that was not cash flow tested for asset adequacy modeled for C-3 RBC (see Appendix 1 for details) excluding products included under the “Recommended Approach for Setting Cash Flow Modeling for C-3 Risk-Based Capital Requirements for Variable Annuities and Similar Products” and
(b) Business in companies that did not cash flow test for asset adequacy modeled for C-3 RBC.

The calculation for risk-based capital should not include unitized separate accounts without guarantees even though they may be included in Item 32 of the Notes to Financial Statements. Separate accounts with guarantees should be included, except for those separate accounts that guarantee an index and follow a Class II investment strategy and certain other guaranteed separate accounts as defined below. Synthetic GICs net of certain credits should be included in this section. The provisions for these credits to C-3 requirements is provided in the Separate Accounts section of the risk-based capital instructions. Experience-rated pension contracts defined below should be excluded from “annuity reserves with fair value adjustment” and “annuity reserves not withdrawable.” All amounts should be reported net of reinsurance, net of policy loans and adjusted for assumed and ceded modified coinsurance.

Experience-rated group and individual pension business that meets all of the following four conditions is excluded from C-3 factor-based risk:
(a) General account funded;
(b) Reserve interest rate is carried at no greater than 4 percent and/or fund long-term interest guarantee (in excess of a year) does not exceed 4 percent;
(c) Experience rating mechanism is immediate participation, retroactive credits, or other technique other than participating dividends; and
(d) Either is not subject to discretionary withdrawal or is subject to fair value adjustment, but only if the contractually defined lump sum fair value adjustment reflects portfolio experience as well as current interest rates and is expected to pass both credit risk and rate risk to the policyholder at withdrawal. (A lump sum settlement based on changes in prevailing rates does not meet this test. Book value cash out options meet this test as long as the present value of payments using U.S. Treasury spot rates is less than or equal to the lump sum fair value on the valuation date and the policyholder does not have an option to change the payment period once payments begin.)

For companies not exempt from cash flow testing for C-3 RBC, such testing is to include those experience-rated products exempted from the formula factors, but for which cash flow testing is done as a part of the asset adequacy testing.

Non-indexed separate account business with guarantees that satisfy both conditions (b) and (d) above is excluded from C-3 factor-based risk.

Guaranteed indexed separate account business following a Class I investment strategy is reported on Line (18). Note that in the AAA Report “Proposed New Risk-Based Capital Method for Separate Accounts That Guarantee an Index” (adopted by the NAIC Life Risk-Based Capital Working Group in New York, NY, June 2003), there is a stress test applicable to Class I investment strategies for a company that is not subject to scenario testing requirements.

Company source records entered in Column (3) of Lines (30) and (31) should be adjusted to a pre-tax basis.

Line (33)
Enter in Column (3) the pre-tax interest rate risk results of cash flow testing per the Appendix 1a methodology. Line (33) should be completed by all companies who do cash flow risk testing of Certain Annuities and Single Premium Life Insurance for asset adequacy C-3 RBC (see Appendix 1) except those with less than $100 million in admitted assets at year-end, unless the answer to Line (14) or Line (22) of LR049 Exemption Test: Cash Flow Testing for C-3 RBC is “Yes” or if the company chooses to do C-3 RBC cash flow testing on a continuing basis. Once a company chooses to use the C-3 RBC cash flow testing method to calculate RBC it must continue to do so unless regulatory approval from the domiciliary jurisdiction is received to go back to the factor-based method. The interest rate risk component for Variable Annuities and Similar Products should be entered into Line (35).

Line (34)
If Line (33) is equal to zero, then Line (34) should equal Line (32). Otherwise, Line (34) should equal Line (32) plus Line (33) less Line (16) less Line (17) subject to a minimum of 0.5 times Line (32).

Line (35)
Enter the interest rate risk component from the Cash Flow Modeling for C-3 RBC Requirements for Variable Annuities and Similar Products (see Line (37)). The interest rate risk component should be entered on a pre-tax basis using the enacted maximum corporate income tax rate.

Line (36)
Total interest rate risk. Equals Line (34) plus Line (35).

Line (37)
Cash Flow Modeling for C-3 RBC Requirements for Variable Annuities and Similar Products:

Instructions for 2019:

2019 is a transition year to a new modeling framework. A company must follow one of two options to develop the C-3 RBC amount:

A. If the company has elected to apply the requirements of VM-21 from the 2020 version of the NAIC valuation manual to determine reserves for the Variable Annuities for 12/31/19, the company shall follow the instructions beginning on page 16 labeled “Instructions for 2020 and Later” for determining the C-3 RBC requirement on the Variable Annuities and similar contracts, but may not apply the phase-in provisions of paragraph E on page 18. Otherwise,

A.B. The company shall follow the nine-step process below through page 15.

Overview (2019)

The amount reported on Line (37) is calculated using a nine-step process. As in Step 3 of the Single Scenario C-3 Measurement Considerations section of Appendix 1a – Cash Flow Testing for C-3 RBC Methodology, existing AVR-related assets should not be included in the initial assets used in the C-3 modeling unless AVR has been excluded from TAC due to its use in the asset adequacy analysis supporting reserves. AVR-related assets may be included with C-3 testing to the extent that the AVR has been used in the cash flow testing and is therefore excluded from TAC, and that portion of the AVR-related assets relates to the business being tested. These assets are available for future credit loss deviations over and above expected credit losses. These deviations are covered by C-1 risk capital. Similarly, future AVR contributions should not be modeled. However, the expected credit losses should be in the C-3 modeling. (Deviations from expected are covered by both the AVR and C-1 risk capital and should not be modeled).

IMR assets should be used for C-3 modeling. If negative cash flows are handled by selling assets, then appropriate modeling of contributions to and amortization of the IMR need to be reflected in the modeling.
(1) The first step is determined by applying the methodology described in the report “Recommended Approach for Setting Risk-Based Capital Requirements for Variable Annuities and Similar Products Presented by the American Academy of Actuaries’ Life Capital Adequacy Subcommittee to the National Association of Insurance Commissioners’ Capital Adequacy Task Force (June 2005)” to calculate the total asset requirement. Although Appendix 2 in the Report notes path dependent models under a different set of initialization parameters might produce scenarios that do not satisfy all the calibration points shown in Table 1, to be in compliance with the requirements in this first step, the actual scenarios used for diversified U.S. equity funds must meet the calibration criteria. The scenarios need not strictly satisfy all calibration points in Table 1 of Appendix 2, but the actuary should be satisfied that any differences do not materially reduce the resulting capital requirements. See the Preamble to the Accounting Practices and Procedures Manual for an explanation of materiality. Include the Tax Adjustment as described in the report using the enacted maximum federal corporate income tax rate. If using the Alternative Method for GMDB Risks, use 1 minus the enacted maximum federal corporate income tax rate in place of the 65% adjustment contained in paragraph 4 (page 55) and the enacted maximum federal corporate income tax rate in place of 35% Income Tax Rate shown in Table 8-9 (page 78). The discount rate in Table 8-9 should also be adjusted for the appropriate enacted maximum federal corporate income tax rate.

(2) The second step is to reduce the amount calculated in (1) above by the interest rate portion of the risk (i.e., only the separate account market risk is included in this step).

(3) The third step is to calculate the Standard Scenario Amount.

(4) Take the greater of the amounts from steps (2) and (3).

(5) Apply the smoothing and transition rules (if applicable) to the amount in step (4).

(6) Add the general account interest rate portion of the risk to the amount in step (5).

(7) Subtract the reported statutory reserves for the business subject to the Report from the amount calculated in step (6). Floor this amount at $0.

(8) Divide the result from step (7) by \((1 - \text{enacted maximum federal corporate income tax rate})\) to arrive at a pre-tax amount.

(9) Split the result from step (8) into an interest rate risk portion and a market risk portion. Note that the interest rate portion may not equal the interest rate portion of the risk used in steps (2) and (6) above even after adjusting these to a pre-tax basis. The interest rate portion of the risk should be included in Line (35) and the market risk portion in Line (37).

The lines on the alternative calculations page will not be required for 2018.

Calculation of the Total Asset Requirement

The method of calculating the Total Asset Requirement is explained in detail in the AAA’s June 2005 report, referenced above. In summary, it is as follows:

A. Aggregate the results of running stochastic scenarios using prudent best estimate assumptions (the more reliable the underlying data is, the smaller the need for margins for conservatism) and calibrated fund performance distribution functions. If utilizing prepackaged scenarios as outlined in the American Academy of Actuaries’ report, Construction and Use of Pre-Packaged Scenarios to Support the Determination of Regulatory Risk Based Capital Requirements for Variable Annuities and Similar Products, Jan. 13, 2006, the Enhanced C-3 Phase I Interest Rate Generator should be used in generating any interest rate scenarios or regenerating pre-packaged fund scenarios for funds that include the impact of bond yields. Details concerning the Enhanced C-3 Phase I Interest Rate Generator can be found on the American Academy of Actuaries webpage at the following address http://www.actuary.org/pdf/life/c3supp_jan06.pdf. The Enhanced C-3 Phase I Interest Rate Generator with its ability to use the yield curve as of the run date and to regenerate pre-packaged fund returns using interest rate scenarios based on the current yield curve replaces the usage of the March 2005 pre-packaged scenarios.
B. Calculate required capital for each scenario by calculating accumulated statutory surplus, including the effect of federal income taxes at the enacted maximum federal corporate income tax rate, for each calendar year-end and its present value. The negative of the lowest of these present values is the asset requirement for that scenario. These values are recorded for each scenario and the scenarios are then sorted on this measure. For this purpose, statutory surplus is modeled as if the statutory reserve were equal to the working reserve.

C. The Total Asset Requirement is set at the 90 Conditional Tail Expectation by taking the average of the worst 10 percent of all the scenarios’ asset requirements (capital plus starting reserve). Risk-based capital is calculated as the excess of the Total Asset Requirement above the statutory reserves. For products with no guaranteed living benefit, or just a guaranteed death benefit, an alternative method is allowed, as described in the AAA report.

D. Risk-based capital is calculated as the excess of the Total Asset Requirement above the statutory reserves. Except for the effect of the Standard Scenario and the Smoothing and Transition Rules (see below), this RBC is to be combined with the C-1cs component for covariance purposes.

E. A provision for the interest rate risk of the guaranteed fixed fund option, if any, is to be calculated and combined with the current C-3 component of the formula.

F. The way grouping (of funds and of contracts), sampling, number of scenarios, and simplification methods are handled is the responsibility of the actuary. However, all these methods are subject to Actuarial Standards of Practice, supporting documentation and justification.

G. Certification of the work done to set the RBC level will be required to be submitted with the RBC filing. Refer to Appendices 10 and 11 of the AAA LCAS C-3 Phase II RBC Report (June 2005) for further details of the certification requirements. The certification should specify that the actuary is not opining on the adequacy of the company's surplus or its future financial condition. The actuary will also note any material change in the model or assumptions from that used previously and the impact of such changes (excluding changes due to a change in these NAIC instructions). Changes will require regulatory disclosure and may be subject to regulatory review and approval. Additionally, if hedging is reflected in the stochastic modeling, additional certifications are required from an actuary and financial officer of the company.

The certification(s) should be submitted by hard copy with any state requiring an RBC hard copy.

H. An actuarial memorandum should be constructed documenting the methodology and assumptions upon which the required capital is determined. The memorandum should also include sensitivity tests that the actuary feels appropriate, given the composition of their block of business (i.e., identifying the key assumptions that, if changed, produce the largest changes in the RBC amount). This memorandum will be confidential and available to regulators upon request.

Application of the Tax Adjustment

Tax Adjustment: Under the U.S. IRC, the tax reserve is defined. It can never exceed the statutory reserve nor be less than the cash surrender value. If tax reserves assumed in the projection are set equal to Working Reserves and if tax reserves actually exceed Working Reserves at the beginning of the projection, a tax adjustment is required.

A tax adjustment is not required in the following situations:
- Tax reserves are projected directly; that is, it is not assumed that projected tax reserves are equal to Working Reserves, whether these are cash values or other approximations.
- Tax reserves at the beginning of the projection period are equal to Working Reserves.
- Tax reserves at the beginning of the projection period are lower than Working Reserves. This situation is only possible for contracts without cash surrender values and when these contracts are significant enough to dominate other contracts where tax reserves exceed Working Reserves. In this case the modeled tax results are overstated each year for reserves in the projection, as well as the projected tax results reversed at the time of claim.
If a tax adjustment is required, the Total Asset Requirement (TAR) must be increased on an approximate basis to correct for the understatement of modeled tax expense. The additional taxable income at the time of claim will be realized over the projection and will be measured approximately using the duration to worst, i.e., the duration producing the lowest present value for each scenario. The method of developing the approximate tax adjustment is described below.

The increase to TAR may be approximated as the corporate tax rate (35 percent) times f times the difference between tax reserves and Working Reserves at the start of the projections. For this calculation, f is calculated as follows: For the scenarios reflected in calculating 90 CTE, the lowest of these present values of accumulated statutory surplus is determined for each calendar year-end and its associated projection duration is tabulated. At each such duration, the ratio of the number of contracts in force (or covered lives for group contracts) to the number of contracts in force (or covered lives) at the start of the modeling projection is calculated. The average ratio is then calculated, over all 90 CTE scenarios, and f is one minus this average ratio. If instead, RBC is determined under the standard scenario method then f is based on the ratio at the worst duration under that scenario. If the Alternative Method is used, f is approximated as 0.5.

Calculation of the Standard Scenario Amount

Standard Scenario for C-3 Phase II Risk Based Capital (RBC) Determination

I) Overview

A) Application to Determine RBC.

A Standard Scenario Amount shall be determined for all of the contracts under the scope described in the June 2005 report, “Recommended Approach for Setting Risk-Based Capital Requirements for Variable Annuities and Similar Products”. If the Standard Scenario Amount is greater than the Total Asset Requirement less any amount included in the TAR but attributable to and allocated to C-3 (Interest Rate Risk) otherwise determined based on the Report, then the Total Asset Requirement before tax adjustment used to determine C-3 Phase II (Market Risk) RBC shall be the Standard Scenario Amount.

The Standard Scenario Amount shall be the sum of the following:

1. For contracts for which RBC is based on the Alternative Methodology applied without a model office using 100 percent of the MGDB mortality table, the Standard Scenario Amount shall be the sum of the total asset requirement before tax adjustment from the Alternative Methodology applied to such contracts.

2. For contracts without guaranteed death benefits for which RBC is based on the Alternative Methodology applied without a model office, the Standard Scenario Amount shall be the sum of the total asset requirements before tax adjustment from the Alternative Methodology applied to such contracts.

3. For contracts under the scope of the Report other than contracts for which paragraphs 1 and 2 apply, the Standard Scenario Amount is determined by use of The Standard Scenario Method described in Section III. The Standard Scenario Method requires a single projection of account values based on specified returns on the assets supporting the account values. On the valuation date an initial drop is applied to the account values based on the supporting assets. Subsequently, account values are projected at the rate earned on supporting assets less a margin. Additionally, the projection includes the cash flows for certain contract provisions, including any guaranteed living and death benefits using the assumptions in Section III. Thus, the calculation of the Standard Scenario Amount will reflect the greatest present value of the accumulated projected cost of guaranteed benefits less the accumulated projected revenue produced by the margins in accordance with Subsection III (D).

The Standard Scenario Amount for all contracts subject to the Standard Scenario Method is determined as of the valuation date under the Standard Scenario Method described in Section III based on a rate, DR. DR is the annual effective equivalent of the 10-year constant maturity treasury rate reported by the Federal Reserve for the month of valuation plus 50 basis points. However, DR shall not be less than 3 percent or more than 9 percent. If the 10-year constant maturity treasury rate is no longer available, then a substitute rate determined by the National Association of Insurance Commissioners shall be used. The accumulation rate, AR, is the product of DR and one minus the tax rate defined in paragraph III(D)(10).
No modification is allowed from the requirements in Section III unless the Domiciliary Commissioner approves such modification as necessary to produce a reasonable result.

C) Illustrative Application of the Standard Scenario Method to a Projection, Model Office and Contract by Contract.

To provide information on the significance of aggregation, a determination of the Standard Scenario Amount based on paragraphs III(B)(1) and III(B)(2) is required for each contract subject to paragraph I(A)(3). The sum of all such Standard Scenario Amounts is described as row B in Table A. In addition, if the Conditional Tail Expectation Amount in the Report is determined based on a projection of an inforce prior to the statement date and/or by the use of a model office, which is a grouping of contracts into representative cells, then additional determinations of the Standard Scenario Amount shall be performed on the prior inforce and/or model office. The calculations are for illustrative purposes to assist in validating the reasonableness of the projection and or the model office and to determine the significance of aggregation.

Table A identifies the Standard Scenario Amounts required by this section. The Standard Scenario Amounts required are based on how the Conditional Tail Expectation projection or Alternative Methodology is applied. For completeness, the table also includes the Standard Scenario Amount required by paragraph I(A)(3). The amounts in Table A should be included as part of the certifying actuary’s annual supporting memorandum specified in paragraph (H) of the “Calculation of the Total Asset Requirement” section of the RBC instructions.

- Standard Scenario Amounts in rows A and B in Table A are required of all companies subject to paragraph I(A)(3). No additional Standard Scenario Amounts are required if a company’s stochastic or alternative methodology result is calculated on the statement date using individual contracts (i.e., without a model office).
- A company that uses a model office as of the statement date to determine its stochastic or alternative methodology result must provide the Standard Scenario Amount for the model office. This is row C.
- A company that uses an aggregation by duration of contract by contract projection of a prior inforce to determine its stochastic or alternative methodology with result PS and then projects requirements to the statement date with result S must provide the Standard Scenario Amount for the prior inforce, row D.
- A company that uses a model office of a prior inforce to determine its stochastic or alternative methodology requirements with result PM and then projects requirements to the statement date with result S must provide the Standard Scenario Amount for the model office on the prior inforce date, row E.
Table A

<table>
<thead>
<tr>
<th>Standard Scenario Amounts</th>
<th>Guideline Variations</th>
<th>Validation Measures</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Model Office Projection</td>
</tr>
<tr>
<td>A. Aggregate valuation on the statement date on inforce contracts required in I(A)(3)</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>B. Seriatim valuation on the statement date on inforce contracts</td>
<td>None: Compare to A</td>
<td>None</td>
</tr>
<tr>
<td>C. Aggregate valuation on the statement date on the model office</td>
<td>If not material to model office validation</td>
<td>A/C compare to 1.00</td>
</tr>
<tr>
<td>D. Aggregate valuation on a prior inforce date on prior inforce contracts</td>
<td>If not material to projection validation</td>
<td>None</td>
</tr>
<tr>
<td>E. Aggregate valuation on a prior inforce date of a model office</td>
<td>If not material to model office or projection validation</td>
<td>(A/E – S/PM) compare to 0</td>
</tr>
</tbody>
</table>

Modification of the requirements in Section III when applied to a prior inforce or a model office is permitted if such modification facilitates validating the projection of inforce or the model office. All such modifications should be documented. No modification is allowed for row B as of the statement date unless the Domiciliary Commissioner approved such modification as necessary to produce a reasonable result under the corresponding amount in row A.

II) Basic Adjusted Reserve

For purposes of determining the Standard Scenario Amount for Risk-Based Capital, the Basic Adjusted Reserve for a contract shall be the Working Reserve, as described in the Report, as of the valuation date.

III) Standard Scenario Amount - Application of the Standard Scenario Method

A) General

Where not inconsistent with the guidance given here, the process and methods used to determine results under the Standard Scenario Method shall be the same as required in the calculation under the modeling methodology required by the Report. Any additional assumptions needed to apply the Standard Scenario Method to the inforce shall be explicitly documented.
B) Results for the Standard Scenario Method.

The Standard Scenario Amount is equal to (1) + (2) – (3) where:

1) Is the sum of the Basic Adjusted Reserve as described in Section II for all contracts for which the Standard Scenario Amount is being determined,

2) Is zero or if greater the aggregate greatest present value for all contracts measured as of the end of each projection year of the negative of the Accumulated Net Revenue described below using the assumptions described in Subsection III(D) and a discount rate equal to the Accumulation Rate, AR. The Accumulated Net Revenue at the end of a projection year equals (i) + (ii) - (iii) where:
 (i) Is the Accumulated Net Revenue at the end of the prior projection year accumulated at the rate AR to the end of the current projection year. The Accumulated Net Revenue at the beginning of the projection (i.e., time 0) is zero.
 (ii) Are the margins generated during the projection year on account values as defined in paragraph III(D)(1) multiplied by one minus the tax rate and accumulated at rate AR to the end of current projection year, and
 (iii) Are the contract benefits paid in excess of account value applied plus the Individual reinsurance premiums (ceded less assumed) less the Individual reinsurance benefits (ceded less assumed) payable or receivable during the projection year multiplied by one minus the tax rate and accumulated at rate AR to the end of current projection year. Individual reinsurance is defined in paragraph III(D)(2).

3) Is the value of approved hedges and Aggregate reinsurance as described in paragraph III(E)(2). Aggregate reinsurance is defined in paragraph III(D)(2).

C) The actuary shall determine the projected reinsurance premiums and benefits reflecting all treaty limitations and assuming any options in the treaty to the other party are exercised to decrease the value of reinsurance to the reporting company (e.g., options to increase premiums or terminate coverage). The positive value of any reinsurance treaty that is not guaranteed to the insurer or its successor shall be excluded from the value of reinsurance. The commissioner may require the exclusion of any portion of the value of reinsurance if the terms of the reinsurance treaties are too restrictive (e.g., time or amount limits on benefits correlate to the Standard Scenario Method).

D) Assumptions for Paragraph III (B) (2) Margins and Account Values.

1) Margins on Account Values. The bases for return assumptions on assets supporting account values are shown in Table I. The Initial returns shall be applied to the account values assigned to each asset class on the valuation date as immediate drops, resulting in the Account Values at time 0. The "Year 1" and "Year 2+" returns are gross annual effective rates of return and are used (along with other decrements and/or increases) to produce the Account Values as of the end of each projection year. For purposes of this section, money market funds shall be considered part of the Bond class.

 The Fixed Fund rate is the greater of the minimum rate guaranteed in the contract or 3.5 percent but not greater than the current rates being credited to Fixed Funds on the valuation date.

 Account Values shall be accumulated after the initial drop using the rates from Table I with appropriate reductions applied to the supporting assets. The appropriate reductions for account values supported by assets in the Equity, Bond or Balance Classes are all fund and contract charges according to the provisions of the funds and contracts. The appropriate reduction for Account Values supported by Fixed Funds is zero.
The margins on Account Values are defined as follows:

a) During the Surrender Charge Period:
 i. 0.10% of Account Value; plus
 ii. The maximum of:
 - 0.20% of Account Value; or
 - Explicit and optional contract charges for guaranteed living and death benefits.

b) After the Surrender Charge Period:
 i. The amount determined in (a) above; plus
 ii. The lesser of:
 - 0.65% of Account Values; and
 - 50% of the excess, if any, of all contract charges over (a) above.

However, on fixed funds after the surrender charge period, a margin of up to the amount in (a) above plus 0.4% may be used.

Table I			
Equity Class	Initial	Year 1	Year 2+
Bond Class	0	0	4.85%
Balanced Class	-12%	0%	3.74%
Fixed Separate Accounts and General Account	Fixed Fund Rate	Fixed Fund Rate	

2) **Reinsurance Credit.** Individual reinsurance is defined as reinsurance where the total premiums for and benefits of the reinsurance can be determined by applying the terms of the reinsurance to each contract covered without reference to the premiums or benefits of any other contract covered and summing the results over all contracts covered. Reinsurance that is not Individual reinsurance is Aggregate reinsurance.

Individual reinsurance premiums projected to be payable on ceded risk and receivable on assumed risk shall be included in the subparagraph III(B)(2)(iii). Similarly, Individual reinsurance benefits projected to be receivable on ceded risk and payable on assumed risk shall be included in subparagraph III(B)(2)(iii). No Aggregate reinsurance shall be included in subparagraph III(B)(2)(iii).
3) Lapses, Partial Withdrawals, and Moneyness. Partial withdrawals elected as guaranteed living benefits or required contractually (e.g., a contract operating under an automatic withdrawal provision on the valuation date) are to be included in subparagraph III(B)(2)(iii). No other partial withdrawals, including free partial withdrawals, are to be included. All lapse rates shall be applied as full contract surrenders.

A contract is in the money (ITM) if it includes a guaranteed living benefit and at any time the portion of the future projected account value under the Standard Scenario Method required to obtain the benefit would be less than the value of the guaranteed benefit at the time of exercise or payment. If the projected account value is 90 percent of the value of the guaranteed benefit at the time of exercise or payment, the contract is said to be 10 percent in the money. If the income from applying the projected account value to guaranteed purchase rates exceeds the income from applying the projected benefit base to GMIB purchase rates for the same type of annuity, then there is no GMIB cost and the GMIB is not in the money. A contract not in the money is out of the money (OTM). If a contract has multiple living benefit guarantees then the contract is ITM to the extent that any of the living benefit guarantees are ITM. Lapses shall be at the annual effective rates given in Table II.

<table>
<thead>
<tr>
<th>Table II – Lapse Assumptions</th>
</tr>
</thead>
<tbody>
<tr>
<td>During Surrender Charge Period</td>
</tr>
<tr>
<td>Death Benefit Only Contracts</td>
</tr>
<tr>
<td>All Guaranteed Living Benefits OTM</td>
</tr>
<tr>
<td>Any Guaranteed Account Balance Benefits ITM</td>
</tr>
<tr>
<td>Any Other Guaranteed Living Benefits ITM</td>
</tr>
</tbody>
</table>

4) Account Transfers and Future Deposits. No transfers between funds shall be assumed to determine the greatest present value amount required under paragraph III(B)(2) unless required by the contract (e.g., transfers from a dollar cost averaging fund or contractual rights given to the insurer to implement a contractually specified portfolio insurance management strategy or a contract operating under an automatic re-balancing option). When transfers must be modeled, to the extent not inconsistent with contract language, the allocation of transfers to funds must be in proportion to the contract's current allocation to funds.

Margins generated during a projection year on funds supporting account values are transferred to the Accumulation of Net Revenue at year-end and are subsequently accumulated at the Accumulation Rate. Assets for each class supporting account values are to be reduced in proportion to the amount held in each asset class at the time of transfer of margins or any portion of Account Value applied to the payment of benefits.

No future deposits shall be assumed unless required by the terms of the contract to prevent contract or guaranteed benefit lapse, in which case they must be modeled. When future deposits must be modeled, to the extent not inconsistent with contract language, the allocation of the deposit to funds must be in proportion to the contract's current allocation to funds.

5) Mortality. Mortality at 80 percent of the 1994 MGDB tables through age 95 increasing by 1 percent each year to 100 percent of the 1994 MGDB table at age 115 shall be assumed in the projection used to determine the greatest present value amount required under paragraph III(B)(2).
6) **Projection Frequency.** The projection used to determine the greatest present value amount required under paragraph III(B)(2) shall be calculated using an annual or more frequent time step, such as quarterly. For time steps more frequent than annual, assets supporting Account Values at the start of each projection year may be retained in such funds until year-end (i.e., pre-tax margin earned during the year will earn the fund rates instead of the Discount Rate until year-end) or removed after each time step. However, the same approach shall be applied for all years. Subsequent to each projection year-end, Accumulated Net Revenues for the year shall earn the Accumulation Rate. Similarly, projected benefits, lapses, elections and other contract activity can be assumed to occur annually or at the end of each time step, but the approach shall be consistent for all years.

7) **Surrender Charge Period.** If the surrender charge for the contract is determined based on individual contributions or deposits to the contracts, the surrender charge amortization period may be estimated for projection purposes. Such estimated period shall not be less than the remaining duration based on the normal amortization pattern for the remaining total contract charge assuming it resulted from a single deposit, plus one year.

8) **Contract Holder Election Rates.** Contract holder election rates to determine amounts in subparagraph III(B)(2)(iii) shall be 15 percent per annum for any elective ITM benefit except guaranteed withdrawal benefits, but only to the extent such election does not terminate a more valuable benefit subject to election. Guaranteed Minimum Death Benefits are not benefits subject to election. Exception: Contract holder election rates shall be 100 percent at the last opportunity to elect an ITM benefit, but only to the extent such election does not terminate a more valuable benefit subject to election. A benefit is more valuable if it is more ITM in absolute dollars using the definition of ITM in paragraph III(D)(3).

For guaranteed minimum withdrawal benefits, a partial withdrawal equal to the applicable percentage in Table III applied to the contract’s maximum allowable partial withdrawal shall be assumed in subparagraph III(B)(2)(iii). However, if the contract’s minimum allowable partial withdrawal exceeds the partial withdrawal from applying the rate in Table III to the contract’s maximum allowable partial withdrawal, then the contract’s minimum allowable partial withdrawal shall be assumed in subparagraph III(B)(2)(iii).

<table>
<thead>
<tr>
<th>Table III – Guaranteed Withdrawal Assumptions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attained Age</td>
</tr>
<tr>
<td>Withdrawals do not reduce other elective Guarantees that are in the money</td>
</tr>
<tr>
<td>Withdrawals reduce elective Guarantees that are in the money</td>
</tr>
</tbody>
</table>

9) **GMIBs.** For subparagraph III(B)(2)(iii), GMIB cost at the time of election shall be the excess, if positive, of the reserve required for the projected annuitization stream over the available account value. If the reserve required is less than the account value, the GMIB cost shall be zero. The reserve required shall be determined using the Annuity 2000 Mortality Table and a valuation interest rate equal to the Discount Rate. If more than one annuity option is available, chose the option with a reserve closest to the reserve for a life annuity with 10 years of certain payments.

10) **Indices.** If an interest index is required to determine projected benefits or reinsurance obligations, the index must assume interest rates have not changed since the last reported rates before the valuation date. If an equity index is required, the index shall be consistent with the last reported index before the valuation date, the initial drop in equity returns and the subsequent equity returns in the standard scenario projection up to the time the index is used. The sources of information and how the information is used to determine indexes shall be documented and, to the extent possible, consistent from year to year.

11) **Taxes.** All taxes shall be based on the enacted maximum federal corporate income tax rate.

E) **Assumptions for use in paragraph III (B)(3).**
1) **The Value of Aggregate Reinsurance.** The value of Aggregate reinsurance is the discounted value, at rate AR of the excess of: a) the benefit payments from the reinsurance, over b) the reinsurance premiums, where (a) and (b) are determined under the assumptions described in Subsection III(D).

2) **The Value of Approved Hedges.** The value of approved hedges shall be calculated separately from the calculation in paragraph III(B)(2). The value of approved hedges is the difference between: a) the discounted value at rate AR of the after-tax cash flows from the approved hedges; less b) their statement values on the valuation date.

To be an approved hedge, a derivative or other investment has to be an actual asset held on the valuation date, be designated as a hedge for one or more contracts subject to the Standard Scenario, and be part of a clearly defined hedging strategy as described in the Report. If the approved hedge also supports contracts not subject to the Standard Scenario, then only that portion of the hedge designated for contracts subject to the Standard Scenario shall be included in the value of approved hedges. Approved hedges must be held in accordance with an investment policy that has been implemented for at least six months and has been approved by the Board of Directors or a subcommittee of Board members. A copy of the investment policy and the resolution approving the policy shall be maintained with the documentation of the Standard Scenario and available on request. Approved hedges must be held in accordance with a written investment strategy developed by management to implement the Board's investment policy. A copy of the investment strategy on the valuation date, the most recent investment strategy presented to the Board if different and the most recent written report on the effectiveness of the strategy shall be maintained with the documentation of the Standard Scenario and available on request.

The commissioner may require the exclusion of any portion of the value of approved hedges upon a finding that the company's documentation, controls, measurement, execution of strategy or historical results are not adequate to support a future expectation of risk reduction commensurate with the value of approved hedges.

The item being hedged, the contract guarantees, and the approved hedges are assumed to be accounted for at the average present value of the tail scenarios. The value of approved hedges for the standard scenario is the difference between an estimate of this "tail value" and the "fair value" of approved hedges. For this valuation to be consistent with the statement value of approved hedges, the statement value of approved hedges will need to be held at fair value with the immediate recognition of gains and losses. Accordingly, it is assumed that approved hedges are not subject to the IMR or the equity component of the AVR. Approved hedges need not satisfy SSAP No. 86. In particular, as gains and losses of approved hedges are recognized immediately, approved hedges need not satisfy the requirements for hedge accounting of fair value hedges.

It is the combination of hedges and liabilities that determine which scenarios are the tail scenarios. In particular, scenarios where the hedging is least effective are likely to be tail scenarios and liabilities that are a left tail risk could in combination with hedges become a right tail risk.

The cash flow projection for approved hedges that expire in less than one year from the valuation date should be based on holding the hedges to their expiration. For hedges with an expiration of more than one year, the value of hedges should be based on liquidation of the hedges one year from the valuation date. Where applicable, the liquidation value of hedges shall be consistent with Black-Scholes pricing, a risk-free rate of DR, annual volatility implicit as of the valuation date in the statement value of the hedges under Black-Scholes pricing and a risk free rate of DR and the assumed returns in the Standard Scenario from the valuation date to the date of liquidation.

There is no credit in the Standard Scenario for dynamic hedging beyond the credit that results from hedges actually held on the valuation date. There is no credit for hedges actually held on the valuation date that are not approved hedges as the commitment to maintain the level of risk reduction derived from such hedges is not adequate.

3) **Retention of Components.** For the Standard Scenario Amounts on the statement date the company should have available to the Commissioner the following values:

a) For runs A and B as defined in I(C) by contract and in aggregate the amounts determined in III(B)(1) and III(B)(2).

b) For run A the aggregate amounts determined in III(E)(1) and III(E)(2).

Smoothing and Transition Rules
If a company is following a Clearly Defined Hedging Strategy (See “Recommended Approach for Setting Risk-Based Capital Requirements for Variable Annuities and Similar Products” presented by the American Academy of Actuaries’ Life Capital Adequacy Subcommittee to the National Association of Insurance Commissioner’s Capital Adequacy Task Force (June 2005) for the definition of this phrase) on some or all of its business, a decision should be made whether or not to smooth the TAR. In all cases where ‘cash value’ is to be used, the values used must be computed on a consistent basis for each block of business at successive year-ends. For deferred annuities with a cash value option, direct writers will use the cash value. For deferred annuities with no cash value option, or for reinsurance assumed through a treaty other than coinsurance, use the policyholder account value of the underlying contract. For payout annuities, or other annuities with no account value or cash value, use the amount as defined for variable payout annuities in the definition of Working Reserve. For any business reinsured under a coinsurance agreement that complies with all applicable reinsurance reserve credit “transfer of risk” requirements, the ceding company shall reduce the value in proportion to the business ceded while the assuming company shall use an amount consistent with the business assumed.

A company who reported an amount in Line (37) last year may choose to smooth the Total Asset Requirement. A company is required to get approval from its domestic regulator prior to changing its decision about smoothing from the prior year. To implement smoothing, use the following steps. If a company does not qualify to smooth or a decision has been made not to smooth, go to the step “Reduction for Reported Statutory Reserves.”

Instructions – 2007 and Later

1. Determine the Total Asset Requirement as the greater of that produced by the “Recommended Approach for Setting Risk-Based Capital Requirements for Variable Annuities and Similar Products” presented by the American Academy of Actuaries’ Life Capital Adequacy Subcommittee to the National Association of Insurance Commissioner’s Capital Adequacy Task Force (June 2005) or the value produced by the “Standard Scenario” as outlined above.
2. Determine the aggregate cash value for the contracts covered by the Stochastic modeling requirements.
3. Determine the ratio of TAR / CV for current year.
4. Determine the Total Asset Requirement as actually reported for the prior year Line (37).
5. Determine the aggregate cash value for the same contracts for the prior year-end.
6. Determine the ratio of TAR / CV for prior year.
7. Determine a ratio as 0.4*(6) plus 0.6*(3) {40% prior year ratio and 60% current year ratio}.
8. Determine TAR for current year as the product of (7) and (2) {adjust (2) to be actual 12/31 cash value}.

Reduction for Reported Statutory Reserves

The amount of the TAR (post-Federal Income Tax) determined using the instructions for the applicable year is reduced by the reserve, net of reinsurance, for the business subject to this instruction reported in the current statutory annual statement.

Allocation of Results to Line (35) and Line (37)

See step (9) located in the overview section at the beginning of the instructions for this line.
Overview

The amount reported on Line (35) and Line (37) is calculated using the 7-step process defined below. This calculation applies to all policies and contracts that have been valued following the requirements of AG-43 or VM-21. For contracts whose reserve was determined using the Alternative Methodology (VM-21 Section 7) see step 3 while all other contracts follow steps 1 and 2, then all contracts follow steps 4 - 7.

Step 1 CTE98: The first step is to determine CTE98 by applying the one of the two methodologies described in Paragraph A below.

Step 2 C-3 RBC: using the formulas in paragraph B, determine the C-3 RBC amount based on the amount calculated in step (1). Floor this amount at $0.

Step 3 Determine the C-3 RBC using the Alternative Methodology for any business subject to that requirement as described in Paragraph C.

Step 4 As described in Paragraph D below, the C-3 RBC amount is the sum of the amounts determined in steps 2 and 3 above, but not less than zero. The Total Asset Requirement is the Stochastic Reserve based on the requirements of VM-21 prior to the application of any phase-in, plus the C-3 RBC amount.

Step 5: For a company that has elected a Phase-in for reserves following VM-21 Section 2 B., the C-3 RBC amount is to be phased-in over the same time period following the requirements in paragraph E below.

Step 6 Apply the smoothing rules (if applicable) to the C-3 RBC amount in step (4) or (5) as applicable.

Step 7 Divide the amount from Step 4, 5, or 6 (as appropriate) by (1-enacted maximum federal corporate income tax rate). Split this amount into an interest rate risk portion and a market risk portion, as described in Paragraph G.

The interest rate portion of the risk should be included in Line (35) and the market risk portion in Line (37).

The C-3 RBC is calculated as follows:

A. CTE. (98) is calculated as follows: Except for policies and contracts subject to the Alternative Methodology (See E. below) apply the CTE methodology described in NAIC Valuation Manual VM-21 and calculate the CTE (98) as the numerical average of the 2 percent largest values of the Scenario Reserves, as defined by Section 4 of VM-21. In performing this calculation, the process and methods used to calculate the Scenario Reserves use the requirements of VM-21 and should be the same as used for the reserve calculations. The effect of Federal Income Tax should be handled following one of the following two methods:

1. If using the Macro Tax Adjustment (MTA): The modeled cash flows will ignore the effect of Federal Income Tax. As a result, for each individual scenario, the numerical value of the Scenario Greatest Present Value scenario reserve used in this calculation should be identical to that for the same scenario in the Aggregate Reserve calculation under VM-21. Federal Income Tax is reflected later in the formula in paragraph B.1.
2. If using Specific Tax Recognition (STR): At the option of the company, CTE After-Tax (98) (CTEAT (98)) may be calculated using an approach in which the effect of Federal Income Tax is reflected in the projection of Accumulated Deficiencies, as defined in Section 4.A. of VM-21, when calculating the Scenario Reserve for each scenario. To reflect the effect of Federal Income Tax, the company should find a reasonable and consistent basis for approximating the evolution of tax reserves in the projection, taking into account restrictions around the size of the tax reserves (e.g., that tax reserve must equal or exceed the cash surrender value for a given contract). The Accumulated Deficiency at the end of each projection year should also be discounted at a rate that reflects the projected after-tax discount rates in that year. In addition, the company should add the Tax Adjustment as described below to the calculated CTEAT (98) value.

3. A company that has elected to calculate CTEAT (98) using STR may not switch back to using MTA in the projection of Accumulated Deficiencies without prominently disclosing that change in the certification and supporting memorandum. The company should also disclose the methodology adopted, and the rationale for its adoption, in the documentation required by Paragraph J below.

4. Application of the Tax Adjustment: Under the U.S. IRC, the tax reserve is defined. It can never exceed the statutory reserve nor be less than the cash surrender value. If a company is using STR and if the company’s actual tax reserves exceed the projected tax reserves at the beginning of the projection, a tax adjustment is required. The CTEAT (98) must be increased on an approximate basis to correct for the understatement of modeled tax expense. The additional taxable income at the time of claim will be realized over the projection and will be approximated using the duration to worst, i.e., the duration producing the lowest present value for each scenario. The method of developing the approximate tax adjustment is described below.

The increase to CTEAT (98) may be approximated as the corporate tax rate times f times the difference between the company’s actual tax reserves and projected tax reserves at the start of the projections. For this calculation, f is calculated as follows: For the scenarios reflected in calculating CTE (98), the Scenario Greatest Present Value scenario reserve is determined and its associated projection duration is tabulated. At each such duration, the ratio of the number of contracts in force (or covered lives for group contracts) to the number of contracts in force (or covered lives) at the start of the modeling projection is calculated. The average ratio is then calculated over all CTE (98) scenarios and f is one minus this average ratio. If the Alternative Method is used, f is approximated as 0.5.

The Additional Standard Projection Amount is calculated using the methodology outlined in Section 6 of VM-21.

B. Determination of RBC amount using stochastic modeling:

1. If using the MTA: Calculate the RBC Requirement by the following formula in which the statutory reserve is the actual reserve reported in the Annual Statement, in the second term – i.e., the difference between statutory reserves and tax reserves multiplied by the Federal Income Tax Rate – may not exceed the portion of the company’s non-admitted deferred tax assets attributable to the same portfolio of contracts to which VM-21 is applied in calculating statutory reserves:

 \[25\% \times \left((CTE (98) + Additional Standard Projection Amount – Statutory Reserve) \times (1 – Federal Income Tax Rate) – (Statutory Reserve – Tax Reserve) \times Federal Income Tax Rate \right) \]

2. If the company elects to use the STR: the C-3 RBC is determined by the following formula:

 \[25\% \times (CTEAT (98) + Additional Standard Projection Amount \times (1 – Federal Income Tax Rate) – Statutory Reserve) \]

The Additional Standard Projection Amount is calculated using the methodology outlined in Section 6 of VM-21.

The Total Asset Requirement is defined as the Stochastic Reserve determined according to VM-21 Section 4 plus the C-3 RBC amount determined in this step. All values are prior to any consideration of Phase-in allowances for either reserve or C-3 RBC, or any C-3 RBC smoothing allowance.
C. Determination of C-3 RBC using Alternative Methodology: This calculation applies to all policies and contracts that have been valued following the requirements of AG-43 or VM-21, for which the reserve was determined using the Alternative Methodology (VM-21 Section 7). The C-3 RBC amount is determined by applying the methodology as defined in Appendix 2 to these instructions.

D. The C-3 RBC amount is the sum of the amounts determined in paragraphs B and C above, but not less than zero. The Total Asset Requirement is defined as the Stochastic Reserve determined according to VM-21 Section 4 plus the C-3 RBC amount. All values are prior to any consideration of Phase-in allowances for either reserve or C-3 RBC, or any C-3 RBC smoothing allowance. The RBC values are post-tax.

E. Phase in: A company that has elected to phase-in the effect of the new reserve requirements following VM-21 Section 2.B. shall phase in the effect on C-3 RBC over the same time period, using the following steps:
 - 1. Begin with the C-3 RBC amount from step 7 for Dec. 31, 2019 LR027 Line (37) instructions for all business within the scope of the Variable Annuities modeling requirements as of 12/31/19. Add to this the amount of C-3 RBC computed in the same manner as the 2019 value for any reinsurance ceded that is expected to be recaptured in 2020 and in the scope of the Variable Annuities modeling requirements. This amount is 2019 RBC
 - 2. Determine the C-3 RBC amount as of 12/31/19 using paragraphs A, B, C, and D for the same inforce business as in 1. Labeled as 2019 RBC New
 - 3. Determine the phase-in amount (PIA) as the excess of 2019RBC New over 2019RBC
 - 4. For 12/31/2020, compute the C-3 RBC following paragraphs A – D above, then subtract PIA times (2/3)
 - 5. For 12/31/2021, compute the C-3 RBC following paragraphs A – D above, then subtract PIA times (1/3)

Guidance Note: For a company that has adopted a Phase-in for reserves longer than 3 years, adjust the above formula to reflect the actual period with uniform amortization amounts during that period.

F. Smoothing of C-3 RBC amount

A company should decide whether or not to smooth the C-3 RBC calculated in paragraph D or E above to determine the amount in Line (37). For any business reinsured under a coinsurance agreement that complies with all applicable reinsurance reserve credit “transfer of risk” requirements, the ceding company shall reduce the reserve in proportion to the business ceded while the assuming company shall use a reserve consistent with the business assumed.

A company may choose to smooth the C-3 RBC calculated in paragraph D or E above. A company is required to get approval from its domestic regulator prior to changing its decision about smoothing from the prior year. In addition, a company that has elected to smooth the risk-based capital is required to get approval from its domestic regulator prior to smoothing if it and has experienced a material change in its Clearly Defined Hedging Strategy from the prior year; shall clearly document the impact that the change in hedging strategy had on the C-3 RBC value from step D or E, as appropriate. For this purpose, a company’s Clearly Defined Hedging Strategy is considered to have experienced a material change if any of the items outlined in VM-21 Sections 9 in the current year differs from that in the prior year.

To implement smoothing, use the following steps. If a company does not qualify to smooth or a decision has been made not to smooth, go to paragraph G.

1. Determine the C-3 RBC amount calculated in paragraph D or E above
2. Determine the aggregate reserve for the contracts covered by the Variable Annuity Stochastic modeling requirements.
3. Determine the ratio of the C-3RBC / reserve for current year.
4. Determine the C-3 RBC as actually reported for the prior year Lines (35) plus (37) and adjust that amount to a post-tax amount by multiplying by (1 - enacted maximum federal corporate income tax rate).
5. Determine the aggregate reserve for the contracts in scope of these requirements for the prior year-end.
6. Determine the ratio of the C-3 RBC / reserve for prior year.
7. Determine a ratio as 0.4*(6) plus 0.6*(3) [40% prior year ratio and 60% current year ratio].
8. Determine the risk-based capital for current year as the product of (7) and (2) [adjust (2) to be actual 12/31 reserve].

G. The amount determined in paragraphs D., E., or F. above for the contracts shall be divided by (1-enacted maximum federal corporate income tax rate) to arrive at a pre-tax amount. This pre-tax amount shall be split into a component for interest rate risk and a component for market risk. Neither component may be less than zero. The provision for the interest rate risk, if any, is to be reported in Line (35). The market risk component is reported in Line (37).

The amount reported in Line (37) is to be combined with the C-1cs component for covariance purposes.

H. The way grouping (of funds and of contracts), sampling, number of scenarios, and simplification methods are handled is the responsibility of the company. However, all these methods are subject to Actuarial Standards of Practice, supporting documentation and justification, and should be identical to those used in calculating the company’s statutory reserves following VM-21.

I. Certification of the work done to set the C-3 RBC amount for Variable Annuities and Similar products are the same as are required for reserves as part of VM-31. The certification should specify that the actuary is not opining on the adequacy of the company's surplus or its future financial condition.

The certification(s) should be submitted by hard copy with any state requiring an RBC hard copy.

J. An actuarial memorandum should be constructed documenting the methodology and assumptions upon which the required capital for the variable annuities and similar products is determined. The memorandum should be developed based on the requirements of VM-31. Since the starting point for the C-3 RBC calculation is the cash flow modeling used for the reserves, the documentation requirements for reserves (VM-31) should be followed for the C-3 RBC. The reserve report may be incorporated by reference, with this C-3 RBC memorandum focused on identifying differences and items unique to the C-3 RBC process, or at the company’s option, the documentation of reserves and C-3 RBC may be merged into a single Actuarial Memorandum in the VA Report with any differences for C-3 RBC discussed in a separate section of the Memorandum as outlined in VM-31.

These differences that would need to be identified either in the RBC Actuarial Memorandum or the VA Report will typically include:

- the basis for considering federal income tax,
- whether or not smoothing was applied, and the effect of that smoothing,
- whether or not a phase in was used, and the impact on the reported values,
- if the company elects to calculate CTEAT (98) using STR whereby the effect of Federal Income Tax is reflected in the projection of Accumulated Deficiencies, the company should still disclose in the memorandum the Total Asset Requirement and C-3 RBC that would be obtained if the company had elected to use the MTA method,
- documentation of alternative methodology calculations, if applicable, and
- documentation of how the C-3 RBC values was allocated to the interest and market risk components.

This actuarial memorandum will be confidential and available to regulators upon request.

If the company elects to calculate CTEAT (98) using STR whereby the effect of Federal Income Tax is reflected in the projection of Accumulated Deficiencies, the company should still disclose in the memorandum the Total Asset Requirement and C-3 RBC that would be obtained if the company had elected to use the MTA method.
The lines on the alternative calculations page will not be required for 2019 or later.

The total of all annual statement reserves representing exposure to C–3 risk on Line (36) should equal the following:

- Exhibit 5, Column 2, Line 0199999
- Page 2, Column 3, Line 6
- Exhibit 5, Column 2, Line 0299999
- Exhibit 7, Column 1, Line 14
- Separate Accounts Page 3, Column 3, Line 1 plus Line 2 after deducting (a) funds in unitized separate accounts with no underlying guaranteed minimum return and no unreinsured guaranteed living benefits; (b) non-indexed separate accounts that are not cash flow tested with guarantees less than 4 percent; (c) non-cash-flow-tested experience rated pension reserves/liabilities; and (d) guaranteed indexed separate accounts using a Class II investment strategy.
- Non policyholder reserves reported on Exhibit 7
- Exhibit 5, Column 2, Line 0799997
- Schedule S, Part 1, Section 1, Column 12
- Schedule S, Part 3, Section 1, Column 14
Appendix 1 – Cash Flow Testing Modeling for C-3 RBC

This appendix is applicable for all companies who do Cash Flow Testing for C-3 RBC for Certain Annuities and Single Premium Life products.

The method of developing the C-3 component for these contracts is building on the work of the asset adequacy modeling, but using interest scenarios designed to help approximate the 95th percentile C-3 risk.

The C-3 component is to be calculated as the sum of four amounts, but subject to a minimum. The calculation is:

(a) For Certain Annuities or Single Premium Life Insurance products other than equity-indexed products, whether written directly or assumed through reinsurance, that the company tests for asset adequacy analysis using cash flow testing, an actuary should calculate the C-3 requirement based on the same cash flow models and assumptions used and same “as-of” date for asset adequacy, but with a different set of interest scenarios and a different measurement of results. A weighted average of a subset of the scenario-specific results is used to determine the C-3 requirement. The result is to be divided by \((1 - \text{enacted maximum federal corporate income tax rate})\) to put it on a pre-tax basis for LR027 Interest Rate Risk and Market Risk Column (2) Line (33).

If the “as-of” date of this testing is not Dec. 31, the ratio of the C-3 requirement to reserves on the “as-of” date is applied to the year-end reserves, similarly grouped, to determine the year-end C-3 requirement for this category.

(b) Equity-indexed products are to use the existing C-3 RBC factors, not the results of cash flow testing.

(c) For all other products (either non-cash-flow-tested or those outside the product scope defined above) the C-3 requirements are calculated using current existing C-3 RBC factors and instructions.

(d) For callable/pre-payable assets (including IOs and similar investments other than those used for testing in component a) above, the after-tax C-3 requirement is 50.076.9 percent of the excess, if any, of book/adjusted carrying value above current call price. The calculation is to be done on an asset-by-asset basis. For callable/pre-payable assets used for testing in component a) above as well as those used in C-3P2 testing, the C-3 factor requirement is zero.

The total C-3 component is the sum of (a), (b), (c) and (d), but not less than half the C-3 component based on current factors and instructions.

• For this C-3 calculation, “Certain Annuities” means products with the characteristics of deferred and immediate annuities, structured settlements, guaranteed separate accounts (excluding guaranteed indexed separate accounts following a Class II investment strategy) and GICs (including synthetic GICs and funding agreements). Debt incurred for funding an investment account is included if cash flow testing of the arrangement is required by the insurer’s state of domicile for asset adequacy analysis. The equity-based portions of variable annuity products are not to be included, but including guaranteed fixed options within such products, as they are separately tested under the requirements for Variable Annuities and Similar Products. See Appendix 1b for further discussion.

• The company may use either a standard 50 scenario set of interest rates or an alternative, but more conservative, 12 scenario set (for part a, above). It may use the smaller set for some products and the larger one for others. Details of the cash flow testing for C-3 RBC methodology are contained in Appendix 1a.
In order to allow time for the additional work effort, an estimated value is permitted for the year-end annual statement. For the RBC electronic filing, the actual results of the cash flow testing for C-3 RBC will be required. If the actual RBC value exceeds that estimated earlier in the blanks filing by more than 5 percent, or if the actual value triggers regulatory action, a revised filing with the NAIC and the state of domicile is required by June 15; otherwise, re-filing is permitted but not required.

The risk-based capital submission is to be accompanied by a statement from the appointed actuary certifying that in his or her opinion the assumptions used for these calculations are not unreasonable for the products, scenarios and purpose being tested. This C-3 Assumption Statement is required from the appointed actuary even if the cash flow testing for C-3 RBC is done by a different actuary.

The cash flow testing used for this purpose will use assumptions as to cash flows, assets associated with tested liabilities, future investment strategy, rate spreads, “as-of” date and how negative cash flow is reflected consistent with those used for cash flow testing for asset adequacy purposes (except that if negative cash flow is modeled by borrowing, the actuary needs to make sure that the amount and cost of borrowing are reasonable for that particular scenario of the C-3 testing). The other differences are the interest scenarios assumptions and how the results are used.

It is important that assumptions be reviewed for reasonableness under the severe scenarios used for C-3 RBC cash flow testing. The assumptions used for cash flow testing may need to be modified so as to produce reasonable results in severe scenarios.

The actuary must also ensure that the cash flow testing used for the 50 or 12 scenarios does not double-count cash flow offsets to the interest rate risks. That is, that the calculations do not reduce C-3 and another RBC component for the same margins. For example, certain reserve margins on some guaranteed separate account products serve an AVR role and are credited against the C-1o requirement. To that degree, these margins should be removed from the reserve used for C-3 RBC cash flow testing.
Appendix 1a – Cash Flow Testing Modeling for C-3 RBC Methodology

General Approach

1. The underlying asset and liability model(s) are those used for year-end Asset Adequacy Analysis cash flow testing, or a consistent model.
2. Run the scenarios (12 or 50) produced from the interest-rate scenario generator.
3. The statutory capital and surplus position, S(t), should be captured for every scenario for each calendar year-end of the testing horizon. The capital and surplus position is equal to statutory assets less statutory liabilities for the portfolio.
4. For each scenario, the C-3 measure is the most negative of the series of present values $S(t) \cdot pv(t)$, where $pv(t)$ is the accumulated discount factor for t years using 105 percent of the after-tax one-year Treasury rates for that scenario. In other words:

$$pv(t) = \prod_{1}^{t} \frac{1}{1+i_j}$$

5. Rank the scenario-specific C-3 measures in descending order, with scenario number 1’s measure being the positive capital amount needed to equal the very worst present value measure.
6. Taking the weighted average of a subset of the scenario specific C-3 scores derives the final C-3 after-tax factor.
 (a) For the 50 scenario set, the C-3 scores are multiplied by the following series of weights:

<table>
<thead>
<tr>
<th>Scenario Rank</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>17</td>
<td>0.02</td>
</tr>
<tr>
<td>16</td>
<td>0.04</td>
</tr>
<tr>
<td>15</td>
<td>0.06</td>
</tr>
<tr>
<td>14</td>
<td>0.08</td>
</tr>
<tr>
<td>13</td>
<td>0.10</td>
</tr>
<tr>
<td>12</td>
<td>0.12</td>
</tr>
<tr>
<td>11</td>
<td>0.12</td>
</tr>
<tr>
<td>10</td>
<td>0.10</td>
</tr>
<tr>
<td>9</td>
<td>0.08</td>
</tr>
<tr>
<td>8</td>
<td>0.06</td>
</tr>
<tr>
<td>7</td>
<td>0.04</td>
</tr>
<tr>
<td>6</td>
<td>0.02</td>
</tr>
</tbody>
</table>

The sum of these products is the C-3 charge for the product.
 (b) For the 12 scenario set, the charge is calculated as the average of the C-3 scores ranked 2 and 3, but cannot be less than half the worst scenario score.
7. If multiple asset/liability portfolios are tested and aggregated, an aggregate C-3 charge can be derived by first summing the $S(t)$'s from all the portfolios (by scenario) and then following Steps 2 through 6 above. An alternative method is to calculate the C-3 score by scenario for each product, sum them by scenario, then order them by rank and apply the above weights.
Single Scenario C-3 Measurement Considerations

1. **GENERAL METHOD** - This approach incorporates interim values, consistent with the approach used for bond, mortgage and mortality RBC factor quantification. The approach establishes the risk measure in terms of an absolute level of risk (e.g., solvency) rather than volatility around an expected level of risk. It also recognizes reserve conservatism, to the degree that such conservatism hasn’t been used elsewhere.

2. **INITIAL ASSETS = RESERVES** - Consistent with appointed actuary practice, the cash flow models are run with initial assets equal to reserves; that is, no surplus assets are used.

3. **AVR** - Existing AVR-related assets should not be included in the initial assets used in the C-3 modeling. These assets are available for future credit loss deviations over and above expected credit losses. These deviations are covered by C-1 risk capital. Similarly, future AVR contributions should not be modeled. However, the expected credit losses should be in the cash flow modeling. (Deviations from expected are covered by both the AVR and the C-1 risk capital.)

4. **IMR** - IMR assets should be used for C-3 modeling. (Also see #9 – Disinvestment Strategy.)

5. **INTERIM MEASURE** - Retained statutory surplus (i.e., statutory assets less statutory liabilities) is used as the year-to-year interim measure.

6. **TESTING HORIZONS** - Surplus adequacy should be tested over a period that extends to a point at which contributions to surplus on a closed block are immaterial in relationship to the analysis. If some products are being cash flow tested for Asset Adequacy Analysis over a longer period than the 30 years generated by the interest-rate scenario generator, the scenario rates should be held constant at the year 30 level for all future years. A consistent testing horizon is important for all lines if the C-3 results from different lines of business are aggregated.

7. **TAX TREATMENT** - The tax treatment should be consistent with that used in Asset Adequacy Analysis. Appropriate disclosure of tax assumptions may be required.

8. **REINVESTMENT STRATEGY** - The reinvestment strategy should be that used in Asset Adequacy Analysis modeling.

9. **DISINVESTMENT STRATEGY** - In general, negative cash flows should be handled just as they are in the Asset Adequacy Analysis. The one caveat is, since the RBC scenarios are more severe, models that depend on borrowing need to be reviewed to be confident that loans in the necessary volume are likely to be available under these circumstances at a rate consistent with the model’s assumptions. If not, adjustments need to be made.

 If negative cash flows are handled by selling assets, then appropriate modeling of contributions and withdrawals to the IMR need to be reflected in the modeling.

10. **STATUTORY PROFITS RETAINED** - The measure is based on a profits retained model, anticipating that statutory net income earned one period is retained to support capital requirements in future periods. In other words, no stockholder dividends are withdrawn, but policyholder dividends, excess interest, declared rates, etc., are modeled realistically and assumed, paid or credited.

11. **LIABILITY and ASSET ASSUMPTIONS** - The liability and asset assumptions should be those used in Asset Adequacy Analysis modeling. Disclosure of these assumptions may be required.

12. **SENSITIVITY TESTING** - Key assumptions shall be stress tested (e.g., lapses increased by 50 percent) to evaluate sensitivity of the resulting C-3 requirement to the various assumptions made by the actuary. Disclosure of these results may be required.
Appendix 1b - Frequently Asked Questions for Cash Flow Testing for C-3 RBC

1. Where can the scenario generator be found? What is needed to run it?

 The scenario generator is a Microsoft Excel spreadsheet. By entering the Treasury yield curve at the date for which the testing is done, it will generate the sets of 50 or 12 scenarios. It requires Windows 95 or higher. This spreadsheet and instructions are available on the NAIC Web site at (http://www.naic.org/cmte_e_lrbc.htm). It is also available on diskette from the American Academy of Actuaries.

2. The results may include sensitive information in some instances. How can it be kept confidential?

 As provided for in Section 8 of the Risk-Based Capital (RBC) For Insurers Model Act, all information in support of and provided in the RBC reports (to the extent the information therein is not required to be set forth in a publicly available annual statement schedule), with respect to any domestic or foreign insurer, which is filed with the commissioner constitute information that might be damaging to the insurer if made available to its competitors, and therefore shall be kept confidential by the commissioner. This information shall not be made public or be subject to subpoena, other than by the commissioner and then only for the purpose of enforcement actions taken by the commissioner under the Risk-Based Capital (RBC) For Insurers Model Act or any other provision of the insurance laws of the state.

3. The definition of the annuities category talks about “debt incurred for funding an investment account…” Could you give a specific description of what is intended?

 One example is a situation where an insurer is borrowing under an advance agreement with a federal home loan bank, under which agreement collateral, on a current fair value basis, is required to be maintained with the bank. This arrangement has many of the characteristics of a GIC, but is classified as debt.

4. The instructions specify that assumptions consistent with those used for Asset Adequacy Analysis testing be used for C-3 RBC, but my company cash flow tests a combination of universal life and annuities for that analysis and using the same assumptions will produce incorrect results. What was intended in this situation?

 Where this situation exists, assumptions should be used for the risk-based capital work that are consistent with those used for the Asset Adequacy Cash Flow Testing. In other words, the assumptions used should be appropriate to the annuity component being evaluated for RBC and consistent with the overall assumption set used for Asset Adequacy Analysis.
Appendix 2 – Appendix 8 from the June 2005 Academy document to be inserted here with adjustments for the new tax rates.

Appendix 2 – Alternative Method for GMDB Risks (2020 Instructions)

Drafting Note: the following is copied from the American Academy of Actuaries June 2005 Report to the NAIC Capital Adequacy Task Force
This Appendix describes the Alternative Method for GMDB exposure in significant detail; how it is to be applied and how the factors were developed. Factor tables have been developed using the Conditional Tail Expectation (“CTE”) risk measure at two confidence levels: 65% and 90%. The latter is determined on an “after tax” basis and is required for the RBC C3 Phase II standard for Total Asset Requirement (“TAR”). The former is a pre-tax calculation and should assist the Variable Annuity Reserve Working Group (“VARWG”) in formulating a consistent “alternative method” for statutory reserves.

General

1. It is expected that the Alternative Method (“AltM”) will be applied on a policy-by-policy basis (i.e., seriatim). If the company adopts a cell-based approach, only materially similar contracts should be grouped together. Specifically, all policies comprising a “cell” must display substantially similar characteristics for those attributes expected to affect risk-based capital (e.g., definition of guaranteed benefits, attained age, policy duration, years-to-maturity, market-to-guaranteed value, asset mix, etc.).

2. The Alternative Method determines the TAR as the sum of the Cash Surrender Value and the following three (3) provisions, collectively referred to as the Additional Asset Requirement (“AAR”):

 • Provision for amortization of the outstanding (unamortized) surrender charges –“Charge Amortization” or “CA”;
 • Provision for fixed dollar expenses/costs net of fixed dollar revenue –“Fixed Expenses” or “FE”;
 • Provision for claims (in excess of account value) under the guaranteed benefits net of available spread-based revenue (“margin offset”) –“Guaranteed Cost” or “GC”.

All of these components reflect the impact of income taxes and are explained in more detail later in this Appendix.

The Risk Based Capital amount (C-3 RBC) is determined in aggregate for the block of policies as the TAR less the reserve determined based on Section 7 of VM-21.

Note the following regarding income taxes:

The company determines the CA and FE amounts by projecting the inforce data and incorporating a 21% tax rate and a post-tax discount rate of 4.54% (= 5.75% x [1-21%]).
In determining the GC amounts, a “look-up” function is used which provides a GMDB Cost Factor “f” and Base Margin Offset Factor “g”. These factors (“f” and “g”) represent CTE90 factors on a post-tax basis where a 35% tax rate and 3.74% (= 5.75% x (1-35%)) discount rate has been used. The company needs to multiply these factors by (.79/.65) to adjust the factors for a 21% tax rate basis. It is noted that this adjustment overstates the impact of the lower tax rate as the impact of the higher discount rate has not been reflected.

3. The total AAR (in excess of cash surrender value) is the sum of the AAR calculations for each policy or cell. The result for any given policy (cell) may be negative, zero or positive.

4. For variable annuities without guarantees, the Alternative Method for capital uses the methodology which applied previously to all variable annuities. The charge is 11 percent of the difference between fund balance and cash surrender value if the current surrender charge is based on fund balance. If the current surrender charge is based on fund contributions, the charge is 2.4 percent of the difference for those contracts for which the fund balance exceeds the sum of premiums less withdrawals and 11 percent for those for which that is not the case. In all cases, the result is to be multiplied by 0.79 to adjust for Federal Income Tax. For in-scope contracts, such as many payout annuities with no cash surrender value and no performance guarantees, there is no capital charge.

5. For variable annuities with death benefit guarantees, the AAR for a given policy is equal to: $R \times (CA + FE) + GC$ where:

- **CA** (Charge Amortization) = Provision for amortization of the outstanding (unamortized) surrender charges
- **FE** (Fixed Expense) = Provision for fixed dollar expenses/costs net of fixed dollar revenue
- **GC** (Guaranteed Cost) = Provision for claims (in excess of account value) under the guaranteed benefits net of available spread-based revenue (“margin offset”)

The components **CA**, **FE** and **GC** are calculated separately. **CA** and **FE** are defined by deterministic “single-scenario” calculations which account for asset growth, interest, inflation and tax at prescribed rates. Mortality is ignored. However, the actuary determines the appropriate “prudent best estimate” lapses/withdrawal rates for the calculations. The components **CA**, **FE** and **GC** may be positive, zero or negative. is a “scaling factor” that depends on certain risk attributes θ for the policy and the product portfolio.

6. The “Alternative Method” factors and formulas for GMDB risks (component **GC**) have been developed from stochastic testing using the 10,000 “Pre-packaged” scenarios (March 2005). The pre-packaged scenarios have been fully documented under separate cover – see http://www.actuary.org/pdf/life/c3supp_march05.pdf at the American Academy of Actuaries’ website.
7. The model assumptions for the AltM Factors (component GC) are documented in the section of this Appendix entitled "Component GC."

8. The table of GC factors that has been developed assumes male mortality at 100% of the MGDB 94 ALB table, and uses a 5-year age setback for female annuitants. Companies using the Alternative Method may use these factors, or may use the procedure described in Methodology Note C3-04 in the report "Recommended Approach for Setting Risk-Based Capital Requirements for Variable Annuities and Similar Products Presented by the American Academy of Actuaries’ Life Capital Adequacy Subcommittee to the National Association of Insurance Commissioners’ Capital Adequacy (E) Task Force (June 2005)" to adjust for the actuary’s Prudent Best Estimate of mortality. If the company does not have a Prudent Best Estimate mortality assumption, the company may use the procedure described in Methodology Note C3-04 to adjust to the 2012 IAM as modified in VM-21 Section 11.C. If a company uses the modified method for a block of business, the option to use the unadjusted table is no longer available for that part of its business. In applying the factors to actual in-force business, a 5-year age setback should be used for female annuitants.

9. There are five (5) major steps in using the GC factors to determine the “GC” component of the AAR for a given policy/cell:

a) Classifying the asset exposure;
b) Determining the risk attributes;
c) Retrieving the appropriate nodes from the factor grid;
d) Interpolating the nodal factors, where applicable (optional);
e) Applying the factors to the policy values.

Categorizing the asset value for the given policy or cell involves mapping the entire exposure to one of the eight (8) prescribed “fund classes”. Alternative Method factors are provided for each asset class.

The second step requires the company to determine (or derive) the appropriate attributes for the given policy or cell. These attributes are needed to calculate the required values and access the factor tables:

- Product form (“Guarantee Definition”), P,
- Adjustment to guaranteed value upon partial withdrawal (“GMDB Adjustment”), A,
- Fund class, F,
- Attained age of the annuitant, X,
- Policy duration since issue, D,
- Ratio of account value to guaranteed value, φ.
Total account charges, MER.

Other required policy values include:

- Account value, \(AV \).
- Current guaranteed minimum death benefit, \(GMDB \).
- Net deposit value (sum of deposits less sum of withdrawals), \(NetDeposits \).
- Net spread available to fund guaranteed benefits (“margin offset”), \(\alpha \).

The next steps – retrieving the appropriate nodes from the factor grid and interpolation – are explained in the section entitled Component GC of this Appendix. Tools are provided to assist the company in these efforts (see Appendix 9), but their use is not mandatory. This documentation is sufficiently detailed to permit the company to write its own lookup and extraction routines. A calculation example to demonstrate the application of the various component factors to sample policy values is shown in the section Component GC of this Appendix.

10. The total account charges should include all amounts assessed against policyholder accounts, expressed as a level spread per year (in basis points). This quantity is called the Management Expense Ratio (“MER”) and is defined as the average amount (in dollars) charged against policyholder funds in a given year divided by average account value. Normally, the MER would vary by fund class and be the sum of investment management fees, mortality & expense charges, guarantee fees/risk premiums, etc. The spread available to fund the GMDB costs (“margin offset”, denoted by \(\alpha \)) should be net of spread-based costs and expenses (e.g., net of maintenance expenses, investment management fees, trail commissions, etc.), but may be increased for Revenue Sharing as can be reflected in modeling (i.e., had the Alternative Method not been elected) by adhering to the requirements set forth in section 6 of the Modeling Methodology. The section of this Appendix on Component GC describes how to determine MER and \(\alpha \). ‘Time-to-maturity’ is uniquely defined in the factor modeling by \(T = 95 - X \). (This assumes an assumed maturity age of 95 and a current attained age of \(X \).)

Net deposits are used in determining benefit caps under the GMDB Roll-up and Enhanced Death Benefit (“EDB”) designs.

11. The GMDB definition for a given policy/cell may not exactly correspond to those provided. In some cases, it may be reasonable to use the factors/formulas for a different product form (e.g., for a “roll-up” GMDB policy near or beyond the maximum reset age or amount, the company should use the “return-of-premium” GMDB factors/formulas, possibly adjusting the guaranteed value to reflect further resets, if any). In other cases, the company might determine the RBC based on two different guarantee definitions and interpolate the results to obtain an appropriate value for the given policy/cell. However, if the policy form (definition of the guaranteed benefit) is sufficiently different from those provided and there is no practical or obvious way to obtain a good result from the prescribed factors/formulas, the company must select one of the following options:

\[^1 \text{Net deposits are required only for certain policy forms (e.g., when the guaranteed benefit is capped as a multiple of net policy contributions).} \]
a) Model the “C3 Phase II RBC” using stochastic projections according to the approved methodology;

b) Select factors/formulas from the prescribed set such that the values obtained conservatively estimate the required capital; or

c) Calculate company-specific factors or adjustments to the published factors based on stochastic testing of its actual business. This option is described more fully in the section of this Appendix on Component GC.

12. The actuary must decide if existing reinsurance arrangements can be accommodated by a straight-forward adjustment to the factors and formulas (e.g., quota-share reinsurance without caps, floors or sliding scales would normally be reflected by a simple pro-rata adjustment to the “gross” GC results). For more complicated forms of reinsurance, the company will need to justify any adjustments or approximations by stochastic modeling. However, this modeling need not be performed on the whole portfolio, but can be undertaken on an appropriate set of representative policies. See the section of this Appendix on Component GC.

Component CA

Component CA provides for the amortization of the unamortized surrender charges using the actual surrender charge schedule applicable to the policy. Over time, the surrender charge is reduced and a portion of the charges in the policy are needed to fund the resulting increase in surrender value. This component can be interpreted as the “amount needed to amortize the unamortized surrender charge allowance for the persisting policies plus an implied borrowing cost”. By definition, the amortization for non-persisting lives in each time period is exactly offset by the collected surrender charge revenue (ignoring timing differences and any waiver upon death). The company must project the unamortized balance to the end of the surrender charge period and discount the year-by-year amortization under the following assumptions. All calculations should reflect the impact of income taxes.

- Net asset return (i.e., after fees) as shown in Table 1 below. These rates roughly equate to an annualized 5th percentile return over a 10-year horizon. The 10 year horizon was selected as a reasonable compromise between the length of a typical surrender charge period and the longer testing period usually needed to capture all the costs on “more expensive” portfolios (i.e., lower available spread, lower AV/GV ratio, older ages, etc.). Note, however, that it may not be necessary to use these returns if surrender charges are a function of deposits/premiums.

- Income tax and discount rates (after-tax) as defined in Table 9 of this Appendix.

- The “Dynamic Lapse Multiplier” calculated at the valuation date (a function of Account Value (AV) ÷ Guaranteed Value (GV) ratio) is assumed to apply in each future year. This factor adjusts the lapse rate to reflect the antiselection present when the guarantee is in-the-money. Lapse rates may be lower when the guarantees have more value.

- Surrender charges and free partial withdrawal provisions should be reflected as per the contract specifications.

2 A 5th percentile return is consistent with the CTE90 risk measure adopted in the C3 Phase II RBC methodology.
• “Prudent best estimate” lapse and withdrawal rates. Rates may vary according to the attributes of the business being valued, including, but not limited to, attained age, policy duration, etc.
• For simplicity, mortality may be ignored in the calculations.

Unlike the GC component, which requires the actuary to map the entire contract exposure to a single “equivalent” asset class, the CA calculation separately projects each fund (as mapped to the 8 prescribed categories) using the net asset returns in Table 2-1.

<table>
<thead>
<tr>
<th>Asset Class/Fund</th>
<th>Net Annualized Return</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fixed Account</td>
<td>Guaranteed Rate</td>
</tr>
<tr>
<td>Money Market and Fixed Income</td>
<td>0%</td>
</tr>
<tr>
<td>Balanced</td>
<td>-1%</td>
</tr>
<tr>
<td>Diversified Equity</td>
<td>-2%</td>
</tr>
<tr>
<td>Diversified International Equity</td>
<td>-3%</td>
</tr>
<tr>
<td>Intermediate Risk Equity</td>
<td>-5%</td>
</tr>
<tr>
<td>Aggressive or Exotic Equity</td>
<td>-8%</td>
</tr>
</tbody>
</table>

Table 2-1: Net Asset Returns for “CA” Component

Component FE

Component FE establishes a provision for fixed dollar costs (i.e., allocated costs, including overhead and those expenses defined on a “per policy” basis) less any fixed dollar revenue (e.g., annual administrative charges or policy fees). The company must project fixed expenses net of any “fixed revenue” to the earlier of contract maturity or 30 years, and discount the year-by-year amounts under the following assumptions. All calculations should reflect the impact of income taxes.

• Income tax and discount rates (after-tax) as defined in Table 9 of this Appendix.
• The “Dynamic Lapse Multiplier” calculated at the valuation date (a function of MV+GV ratio) is assumed to apply in each future year. This factor adjusts the lapse rate to reflect the antiselection present when the guarantee is in-the-money. Lapse rates may be lower when the guarantees have more value.
Per policy expenses are assumed to grow with inflation starting in the second projection year. The ultimate inflation rate of 3% per annum is reached in the 8th year after the valuation date. The company must grade linearly from the current inflation rate (“CIR”) to the ultimate rate. The CIR is the higher of 3% and the inflation rate assumed for expenses in the company’s most recent asset adequacy analysis for similar business.

“Prudent best estimate” for policy termination (i.e., total surrender). Rates may vary according to the attributes of the business being valued, including, but not limited to, attained age, policy duration, etc. Partial withdrawals should be ignored as they do not affect survivorship.

For simplicity, mortality may be ignored in the calculations.

Component GC

The general format for GC may be written as: \(GC = GV \times f(\theta) - AV \times g(\theta) \times h(\theta) \) where \(GV \) = current guaranteed minimum death benefit, \(AV \) = current account value and \(= \frac{\alpha}{\theta} \times g(\theta) \). The functions \(f(\theta), g(\theta) \), and \(h(\theta) \) depend on the risk attributes of the policy \(\theta \) and product portfolio \(\theta \). \(\alpha = R \) was introduced in the “General” section as a “scaling factor”. \(\alpha \) is the company-determined net spread (“margin offset”) available to fund the guaranteed benefits and \(\alpha = 100 \) basis points is the margin offset assumed in the development of the “Base” tabular factors. The functions \(f(\theta), g(\theta) \), and \(h(\theta) \) are more fully described later in this section.

Rearranging terms for GC, we have \(GC = f(\theta) \times \left[GV - AV \times z(\theta) \right] \). Admittedly, \(z(\theta) \) is a complicated function that depends on the risk attribute sets \(\theta \) and \(\theta \), but conceptually we can view \(AV \times z(\theta) \) as a shock to the current account value (in anticipation of the adverse investment return scenarios that typically comprise the CTE(90) risk measure for the AAR) so that the term in the square brackets is a “modified net amount at risk”. Accordingly, \(f(\theta) \) can be loosely interpreted as a factor that adjusts for interest (i.e., discounting) and mortality (i.e., the probability of the annuitant dying).

In practice, \(f(\theta), g(\theta) \), and \(h(\theta) \) are not functions in the typical sense, but values interpolated from the factor grid. The factor grid is a large pre-computed table developed from stochastic modeling for a wide array of combinations of the risk attribute set. The risk attribute set is defined by those policy and/or product portfolio characteristics that affect the risk profile (exposure) of the business: attained age, policy duration, AV/GV ratio, fund class, etc.

Fund Categorization

The following criteria should be used to select the appropriate factors, parameters and formulas for the exposure represented by a specified guaranteed benefit. When available, the volatility of the long-term annualized total return for the fund(s) – or an appropriate benchmark – should conform to the limits presented. This calculation should be made over a reasonably long period, such as 25 to 30 years.

Where data for the fund or benchmark are too sparse or unreliable, the fund exposure should be moved to the next higher volatility class than otherwise indicated. In reviewing the asset classifications, care should be taken to reflect any additional volatility of returns added by the presence of currency risk, liquidity (bid-ask) effects, short selling and speculative positions.
All exposures/funds must be categorized into one of the following eight (8) asset classes:

1. Fixed Account
2. Money Market
3. Fixed Income
4. Balanced
5. Diversified Equity
6. Diversified International Equity
7. Intermediate Risk Equity
8. Aggressive or Exotic Equity

Fixed Account. The fund is credited interest at guaranteed rates for a specified term or according to a ‘portfolio rate’ or ‘benchmark’ index. The funds offer a minimum positive guaranteed rate that is periodically adjusted according to company policy and market conditions.

Money Market/Short-Term. The fund is invested in money market instruments with an average remaining term-to-maturity of less than 365 days.

Fixed Income. The fund is invested primarily in investment grade fixed income securities. Up to 25% of the fund within this class may be invested in diversified equities or high-yield bonds. The expected volatility of the fund returns will be lower than the Balanced fund class.

Balanced. This class is a combination of fixed income securities with a larger equity component. The fixed income component should exceed 25% of the portfolio and may include high yield bonds as long as the total long-term volatility of the fund does not exceed the limits noted below. Additionally, any aggressive or “specialized” equity component should not exceed one-third (33.3%) of the total equities held. Should the fund violate either of these constraints, it should be categorized as an equity fund. These funds usually have a long-term volatility in the range of 8% – 13%.

Diversified Equity. The fund is invested in a broad-based mix of U.S. and foreign equities. The foreign equity component (maximum 25% of total holdings) must be comprised of liquid securities in well-developed markets. Funds in this category would exhibit long-term volatility comparable to that of the S&P500. These funds should usually have a long-term volatility in the range of 13% – 18%.

Diversified International Equity. The fund is similar to the Diversified Equity class, except that the majority of fund holdings are in foreign securities. These funds should usually have a long-term volatility in the range of 14% – 19%.
Intermediate Risk Equity. The fund has a mix of characteristics from both the Diversified and Aggressive Equity Classes. These funds have a long-term volatility in the range of 19%–25%.

Aggressive or Exotic Equity. This class comprises more volatile funds where risk can arise from: (a) underdeveloped markets, (b) uncertain markets, (c) high volatility of returns, (d) narrow focus (e.g., specific market sector), etc. The fund (or market benchmark) either does not have sufficient history to allow for the calculation of a long-term expected volatility, or the volatility is very high. This class would be used whenever the long-term expected annualized volatility is indeterminable or exceeds 25%.

THE SELECTION OF AN APPROPRIATE INVESTMENT TYPE SHOULD BE DONE AT THE LEVEL FOR WHICH THE GUARANTEE APPLIES. FOR GUARANTEES APPLYING ON A DEPOSIT-BY-DEPOSIT BASIS, THE FUND SELECTION IS STRAIGHTFORWARD. HOWEVER, WHERE THE GUARANTEE APPLIES ACROSS DEPOSITS OR FOR AN ENTIRE CONTRACT, THE APPROACH CAN BE MORE COMPLICATED. IN SUCH INSTANCES, THE APPROACH IS TO IDENTIFY FOR EACH POLICY WHERE THE “GROUPED FUND HOLDINGS” FIT WITHIN THE CATEGORIES LISTED AND TO CLASSIFY THE ASSOCIATED ASSETS ON THIS BASIS.

A seriatim process is used to identify the “grouped fund holdings”, to assess the risk profile of the current fund holdings (possibly calculating the expected long-term volatility of the funds held with reference to the indicated market proxies), and to classify the entire “asset exposure” into one of the specified choices. Here, “asset exposure” refers to the underlying assets (separate and/or general account investment options) on which the guarantee will be determined. For example, if the guarantee applies separately for each deposit year within the contract, then the classification process would be applied separately for the exposure of each deposit year.

In summary, mapping the benefit exposure (i.e., the asset exposure that applies to the calculation of the guaranteed minimum death benefits) to one of the prescribed asset classes is a multi-step process:

1. **Map each separate and/or general account investment option to one of the prescribed asset classes.** For some funds, this mapping will be obvious, but for others it will involve a review of the fund’s investment policy, performance benchmarks, composition and expected long-term volatility.
2. **Combine the mapped exposure to determine the expected long-term “volatility of current fund holdings”.** This will require a calculation based on the expected long-term volatilities for each fund and the correlations between the prescribed asset classes as given in Table 2-2.
3. **Evaluate the asset composition and expected volatility** (as calculated in step 2) of current holdings to determine the single asset class that best represents the exposure, with due consideration to the constraints and guidelines presented earlier in this section.
In step 1., the company should use the fund’s actual experience (i.e., historical performance, inclusive of reinvestment) only as a guide in determining the expected long-term volatility. Due to limited data and changes in investment objectives, style and/or management (e.g., fund mergers, revised investment policy, different fund managers, etc.), the company may need to give more weight to the expected long-term volatility of the fund’s benchmarks. In general, the company should exercise caution and not be overly optimistic in assuming that future returns will consistently be less volatile than the underlying markets.

In step 2., the company should calculate the “volatility of current fund holdings” (σ for the exposure being categorized) by the following formula using the volatilities and correlations in Table 2.

$$
\sigma = \sqrt{\sum_{i=1}^{n} \sum_{j=1}^{n} w_i w_j \rho_{ij} \sigma_i \sigma_j}
$$

where $w_i = \frac{AV_i}{\sum_k AV_k}$ is the relative value of fund i expressed as a proportion of total contract value, ρ_{ij} is the correlation between asset classes i and j and σ_i is the volatility of asset class i (see Table 2). An example is provided at the end of this section.
<table>
<thead>
<tr>
<th>Annual Volatility</th>
<th>Fixed Account</th>
<th>Money Market</th>
<th>Fixed Income</th>
<th>Balanced</th>
<th>Diverse Equity</th>
<th>Intl Equity</th>
<th>Interm Equity</th>
<th>Aggr Equity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0%</td>
<td>1</td>
<td>0.50</td>
<td>0.15</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1.5%</td>
<td>0.50</td>
<td>1</td>
<td>0.20</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5.0%</td>
<td>0.15</td>
<td>0.20</td>
<td>1</td>
<td>0.30</td>
<td>0.10</td>
<td>0.10</td>
<td>0.10</td>
<td>0.05</td>
</tr>
<tr>
<td>10.0%</td>
<td>0</td>
<td>0</td>
<td>0.30</td>
<td>1</td>
<td>0.95</td>
<td>0.60</td>
<td>0.75</td>
<td>0.60</td>
</tr>
<tr>
<td>15.5%</td>
<td>0</td>
<td>0</td>
<td>0.10</td>
<td>0.95</td>
<td>1</td>
<td>0.60</td>
<td>0.80</td>
<td>0.70</td>
</tr>
<tr>
<td>17.5%</td>
<td>0</td>
<td>0</td>
<td>0.10</td>
<td>0.60</td>
<td>0.60</td>
<td>1</td>
<td>0.50</td>
<td>0.60</td>
</tr>
<tr>
<td>21.5%</td>
<td>0</td>
<td>0</td>
<td>0.10</td>
<td>0.75</td>
<td>0.80</td>
<td>0.50</td>
<td>1</td>
<td>0.70</td>
</tr>
<tr>
<td>26.0%</td>
<td>0</td>
<td>0</td>
<td>0.05</td>
<td>0.60</td>
<td>0.70</td>
<td>0.60</td>
<td>0.70</td>
<td>1</td>
</tr>
</tbody>
</table>
As an example, suppose three funds (Fixed Income, diversified U.S. Equity and Aggressive Equity) are offered to clients on a product with a contract level guarantee (i.e., across all funds held within the policy). The current fund holdings (in dollars) for five sample contracts are shown in Table 2-3.

TABLE 2-3: FUND CATEGORIZATION EXAMPLE

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>MV Fund X (Fixed Income):</td>
<td>5,000</td>
<td>4,000</td>
<td>5,000</td>
<td></td>
<td>5,000</td>
</tr>
<tr>
<td>MV Fund Y (Diversified Equity):</td>
<td>9,000</td>
<td>7,000</td>
<td>2,000</td>
<td>5,000</td>
<td></td>
</tr>
<tr>
<td>MV Fund Z (Aggressive Equity):</td>
<td>1,000</td>
<td>4,000</td>
<td></td>
<td>5,000</td>
<td>5,000</td>
</tr>
<tr>
<td>Total Market Value:</td>
<td>15,000</td>
<td>15,000</td>
<td>10,000</td>
<td>10,000</td>
<td>10,000</td>
</tr>
<tr>
<td>Total Equity Market Value:</td>
<td>10,000</td>
<td>11,000</td>
<td>2,000</td>
<td>10,000</td>
<td>5,000</td>
</tr>
<tr>
<td>Fixed Income % (A):</td>
<td>33%</td>
<td>27%</td>
<td>80%</td>
<td>0%</td>
<td>50%</td>
</tr>
<tr>
<td>Fixed Income Test (A>75%):</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Aggressive % of Equity (B):</td>
<td>10%</td>
<td>36%</td>
<td>n/a</td>
<td>50%</td>
<td>100%</td>
</tr>
<tr>
<td>Balanced Test (A>25% & B<33.3%):</td>
<td>Yes</td>
<td>No</td>
<td>n/a</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Volatility of Current Fund Holdings:</td>
<td>10.9%</td>
<td>13.2%</td>
<td>5.3%</td>
<td>19.2%</td>
<td>33.4%</td>
</tr>
<tr>
<td>Fund Classification:</td>
<td>Balanced</td>
<td>Diversified*</td>
<td>Fixed Income</td>
<td>Intermediate</td>
<td>Diversified</td>
</tr>
</tbody>
</table>

* Although the volatility suggests “Balanced Fund”, the Balanced Fund criteria were not met. Therefore, this ‘exposure’ is moved “up” to Diversified Equity. For those funds classified as Diversified Equity, additional analysis would be required to assess whether they should be instead designated as “Diversified International Equity”.

As an example, the “Volatility of Current Fund Holdings” for policy #1 is calculated as $\sqrt{A + B}$ where:

\[
A = \left(\frac{5}{15} \times 0.05\right)^2 + \left(\frac{9}{15} \times 0.155\right)^2 - \left(\frac{1}{15} \times 0.26\right)^2
\]

\[
B = 2 \times \left(\frac{5}{15} \times \frac{9}{15}\right)(0.1 \times 0.05 \times 0.155) + 2 \times \left(\frac{5}{15} \times \frac{1}{15}\right)(0.05 \times 0.05 \times 0.26) + 2 \times \left(\frac{9}{15} \times \frac{1}{15}\right)(0.7 \times 0.155 \times 0.26)
\]

So the volatility for contract #1 = $\sqrt{0.0092 + 0.0026} = 0.109$ or 10.9%.
Derivation of Total Equivalent Account Charges (MER) and Margin Offset (α)

The total equivalent account charge ("MER") is meant to capture all amounts that are deducted from policyholder funds, not only those that are commonly expressed as spread-based fees. The MER, expressed as an equivalent annual basis point charge against account value, should include (but not be limited to) the following: investment management fees, mortality & expense charges, administrative loads, policy fees and risk premiums. In light of the foregoing, it may be necessary to estimate the "equivalent MER" if there are fees withdrawn from policyholder accounts that are not expressed as basis point charges against account value.

The margin offset, α, represents the total amount available to fund the guaranteed benefit claims and amortization of the unamortized surrender charge allowance after considering most other policy expenses (including overhead). The margin offset, expressed as an equivalent annual basis point charge against account value, may include the effect of Revenue Sharing in the same manner as would be done for modeling as described in section 6 of the Modeling Methodology, except as may be thereby permitted, should be deemed “permanently available” in all future scenarios. However, the margin offset should not include per policy charges (e.g., annual policy fees) since these are included in FE. It is often helpful to interpret the margin offset as

$$\alpha = MER - X + RS,$$

where X is the sum of:

- Investment management expenses and advisory fees;
- Commissions, bonuses (dividends) and overrides;
- Maintenance expenses, other than those included in FE; and
- Unamortized acquisition costs not reflected in CA.

And RS is the Revenue Sharing to the extent permitted as described above.

Product Attributes and Factor Tables

The tabular approach for the GC component creates a multi-dimensional grid (array) by testing a very large number of combinations for the policy attributes. The results are expressed as factors. Given the seven (7) attributes for a policy (i.e., P, A, F, X, D, ϕ, MER), two factors are returned for $f(\cdot)$ and $g(\cdot)$. The factors are determined by looking up (based on a "key") into the large, pre-computed multi-dimensional tables and using multi-dimensional linear interpolation.

The policy attributes for constructing the test cases and the lookup keys are given in Table 2-4.

As can be seen, there are $6 \times 2 \times 8 \times 8 \times 5 \times 7 \times 3 = 80,640$ “nodes” in the factor grid. Interpolation is only permitted across the last four (4) dimensions: Attained Age (X), Policy Duration (D), AV÷GV Ratio (ϕ) and MER. The “MER Delta” is calculated based on the difference between the actual MER and that assumed in the factor testing (see Table 10), subject to a cap (floor) of 100 bps (−100 bps).
Functions are available to assist the company in applying the Alternative Method for GMDB risks. These functions perform the factor table lookups and associated multi-dimensional linear interpolations. Their use is not mandatory. Based on the information in this document, the company should be able to write its own lookup and retrieval routines. Interpolation in the factor tables is described further later in this section.

<table>
<thead>
<tr>
<th>Policy Attribute</th>
<th>Key : Possible Values & Description</th>
</tr>
</thead>
</table>
| Product Definition, P | 0 : 0 Return-of-premium,
1 : 1 Roll-up (3% per annum),
2 : 2 Roll-up (5% per annum),
3 : 3 Maximum Anniversary Value (MAV),
4 : 4 High of MAV and 5% Roll-up,
5 : 5 Enhanced Death Benefit (excl. GMDB) |
| GV Adjustment Upon Partial Withdrawal, A | 0 : 0 Pro-rata by market value,
1 : 1 Dollar-for-dollar, |
| Fund Class, F | 0 : 0 Fixed Account,
1 : 1 Money Market,
2 : 2 Fixed Income (Bond),
3 : 3 Balanced Asset Allocation,
4 : 4 Diversified Equity,
5 : 5 International Equity,
6 : 6 Intermediate Risk Equity,
7 : 7 Aggressive / Exotic Equity, |
| Attained Age (Last Birthday), X | 0 : 35 4 : 65,
1 : 45 5 : 70,
2 : 55 6 : 75,
3 : 60 7 : 80, |
| Policy Duration (years-since-issue), D | 0 : 0.5,
1 : 3.5,
2 : 6.5,
3 : 9.5,
4 : 12.5, |
A test case (i.e., a node on the multi-dimensional matrix of factors) can be uniquely identified by its key, which is the concatenation of the individual ‘policy attribute’ keys, prefixed by a leading ‘1’. For example, the key ‘12034121’ indicates the factor for a 5% roll-up GMDB, where the GV is adjusted pro-rata upon partial withdrawal, balanced asset allocation, attained age 65, policy duration 3.5, 75% AV/GV ratio and “equivalent” annualized fund based charges equal to the ‘base’ assumption (i.e., 250 bps p.a.).

The factors are contained in the file “C3-II GMDB Factors 100%Mort CTE(90) (2005-03-29).csv”, a comma-separated value text file. Each “row” represents the factors/parameters for a test policy as identified by the lookup keys shown in Table 2-4. Rows are terminated by new line and line feed characters.

Each row consists of 5 entries, described further below.

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test Case Identifier (Key)</td>
<td>Base GMDB Cost Factor</td>
<td>Base Margin Offset Factor</td>
<td>Scaling Adjustment (Intercept)</td>
<td>Scaling Adjustment (Slope)</td>
</tr>
</tbody>
</table>

GMDB Cost Factor. This is the term \(f(\hat{\theta}) \) in the formula for \(GC \). The parameter set \(\hat{\theta} \) is defined by \((P, A, F, X, D, \varphi, MER)\). Here, \(\varphi \) is the AV/GV ratio for the benefit exposure (e.g., policy) under consideration. The values in the factor grid represent CTE(90) of the sample distribution\(^3\) for the present value of guaranteed benefit cash flows (in excess of account value) in all future years (i.e., to the earlier of contract maturity and 30 years), normalized by guaranteed value.

\(^3\) Technically, the sample distribution for “present value of net cost” = PV(GMDB claims) − PV(Margin Offset) was used to determine the scenario results that comprise the CTE90 risk measure. Hence, the “GMDB Cost Factors” and “Base Margin Offset Factors” are calculated from the same scenarios.
Base Margin Offset Factor. This is the term $g(\bar{\theta})$ in the formula for GC. The parameter set $\bar{\theta}$ is defined by $(P, A, F, X, D, \phi, MER)$. Here, ϕ is the AV/GV ratio for the benefit exposure (e.g., policy) under consideration. The values in the factor grid represent CTE(90) of the sample distribution for the present value of margin offset cash flows in all future years (i.e., to the earlier of contract maturity and 30 years), normalized by account value. Note that the Base Margin Offset Factors assume $\alpha = 100$ basis points of “margin offset” (net spread available to fund the guaranteed benefits).

All else being equal, the margin offset α has a profound effect on the resulting AAR. In comparing the Alternative Method against models for a variety of GMDB portfolios, it became clear that some adjustment factor would be required to “scale” the results to account for the diversification effects of attained age, policy duration and AV/GV ratio. The testing examined $W_1 = \frac{\alpha}{MER} = 0.20$ and $W_2 = \frac{\alpha}{MER} = 0.60$, where α = available margin offset and $MER = total "equivalent" account based charges, in order to understand the interaction between the margin ratio (“W”) and AAR.

Based on this analysis, the Scaling Factor is defined as:

$$h(\bar{\theta}) = R = \beta_0 + \beta_1 \times W$$

β_0 and β_1 are respectively the intercept and slope for the linear relationship, defined by the parameter set $\bar{\theta} = (P, F, \phi)$. Here, ϕ is 90% of the aggregate AV/GV for the product form (i.e., not for the individual policy or cell) under consideration. In calculating the Scaling Factor directly from this linear function, the margin ratio “W” must be constrained to the range $[0.2, 0.6]$.

It is important to remember that $\bar{\theta} = 0.90 \times \frac{\sum AV}{\sum GV}$ for the product form being evaluated (e.g., all 5% Roll-up policies). The 90% factor is meant to reflect the fact that the cost (payoff structure) for a basket of otherwise identical put options (e.g., GMDB) with varying degrees of in-the-moneyness (i.e., AV/GV ratios) is more left-skewed than the cost for a single put option at the “weighted average” asset-to-strike ratio.

To appreciate the foregoing comment, consider a basket of two 10-year European put options as shown in Table 2-5. These options are otherwise identical except for their “market-to-strike price” ratios. The option values are calculated assuming a 5% continuous risk-free rate and 16% annualized volatility. The combined option value of the portfolio is $9.00, equivalent to a single put option with $S = \$180.92$ and $X = \$200$. The market-to-strike (i.e., AV/GV) ratio is 0.905, which is less than the average $AV/GV = 1 = \frac{\$75 + \$125}{\$100 + \$125}$.

4 By design, the Alternative Methodology does not directly capture the diversification benefits due to a varied asset profile and product mix. This is not a flaw of the methodology, but a consequence of the structure. Specific assumptions would be required to capture such diversification effects. Unfortunately, such assumptions might not be applicable to a given company and could grossly overestimate the ensuing reduction in required capital.

5 The scaling factors were developed by testing “margin ratio” $W_1 = 0.2$ and $W_2 = 0.6$. Using values outside this range could give anomalous results.
Table 2-5: Equivalent Single European Put Option

<table>
<thead>
<tr>
<th>Market value (AV)</th>
<th>Equivalent Single Put Option</th>
<th>Put Option A (“in-the-money”)</th>
<th>Put Option B (“out-of-the-money”)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$180.92</td>
<td>$75</td>
<td>$125</td>
<td></td>
</tr>
<tr>
<td>Strike price (GV)</td>
<td>$200.00</td>
<td>$100</td>
<td>$100</td>
</tr>
<tr>
<td>Option Value</td>
<td>$9.00</td>
<td>$7.52</td>
<td>$1.48</td>
</tr>
</tbody>
</table>

Scaling Adjustment (Intercept). The scaling factor $h(\theta) = R$ is a linear function of W, the ratio of margin offset to MER. This is the intercept β_0 that defines the line.

Scaling Adjustment (Slope). The scaling factor $h(\hat{\theta}) = R$ is a linear function of W, the ratio of margin offset to MER. This is the slope β_1 that defines the line.

Table 2-6 shows the “Base Cost” and “Base Margin Offset” values from the factor grid for some sample policies. As mentioned earlier, the Base Margin Offset factors assume 100 basis points of “available spread”. The “Margin Factors” are therefore scaled by the ratio $\frac{\alpha}{100}$, where α = the actual margin offset (in basis points per annum) for the policy being valued. Hence, the margin factor for the 7th sample policy is exactly half the factor for node 12044121 (the 4th sample policy in Table 6). That is, $0.02160 = 0.5 \times 0.04319$.

Attachment 2
Table 2-6: Sample Nodes on the Factor Grid

<table>
<thead>
<tr>
<th>KEY</th>
<th>GMDB TYPE</th>
<th>GV ADJUST</th>
<th>FUND CLASS</th>
<th>AGE</th>
<th>POLICY DUR</th>
<th>AVG/GV</th>
<th>MER (bps)</th>
<th>OFFSET</th>
<th>COST FACTOR</th>
<th>MARGIN FACTOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>10132031</td>
<td>ROP</td>
<td>$-for-$</td>
<td>Balanced Allocation</td>
<td>55</td>
<td>0.5</td>
<td>1.00</td>
<td>250</td>
<td>100</td>
<td>0.01073</td>
<td>0.04172</td>
</tr>
<tr>
<td>10133031</td>
<td>ROP</td>
<td>$-for-$</td>
<td>Balanced Allocation</td>
<td>60</td>
<td>0.5</td>
<td>1.00</td>
<td>250</td>
<td>100</td>
<td>0.01619</td>
<td>0.03940</td>
</tr>
<tr>
<td>10134031</td>
<td>ROP</td>
<td>$-for-$</td>
<td>Balanced Allocation</td>
<td>65</td>
<td>0.5</td>
<td>1.00</td>
<td>250</td>
<td>100</td>
<td>0.02286</td>
<td>0.03634</td>
</tr>
<tr>
<td>12044121</td>
<td>5% Rollup</td>
<td>Pro-rata</td>
<td>Diverse Equity</td>
<td>65</td>
<td>3.5</td>
<td>0.75</td>
<td>250</td>
<td>100</td>
<td>0.18484</td>
<td>0.04319</td>
</tr>
<tr>
<td>12044131</td>
<td>5% Rollup</td>
<td>Pro-rata</td>
<td>Diverse Equity</td>
<td>65</td>
<td>3.5</td>
<td>1.00</td>
<td>250</td>
<td>100</td>
<td>0.12931</td>
<td>0.03944</td>
</tr>
<tr>
<td>12044141</td>
<td>5% Rollup</td>
<td>Pro-rata</td>
<td>Diverse Equity</td>
<td>65</td>
<td>3.5</td>
<td>1.25</td>
<td>250</td>
<td>100</td>
<td>0.08757</td>
<td>0.03707</td>
</tr>
<tr>
<td>12044121</td>
<td>5% Rollup</td>
<td>Pro-rata</td>
<td>Diverse Equity</td>
<td>65</td>
<td>3.5</td>
<td>0.75</td>
<td>250</td>
<td>50</td>
<td>0.02286</td>
<td>0.03634</td>
</tr>
</tbody>
</table>

Interpolation in the Factor Tables

Interpolation is only permitted across the last four (4) dimensions of the risk parameter set \(\tilde{\theta} \): Attained Age \(X \), Policy Duration \(D \), AV÷GV Ratio \(\phi \) and MER. The “MER Delta” is calculated based on the difference between the actual MER and that assumed in the factor testing (see Table 2-10), subject to a cap (floor) of 100 bps \((-100 \text{ bps})\). In general, the calculation for a single policy will require three applications of multi-dimensional linear interpolation between the 16 = \(2^4 \) factors/values in the grid:

1. To obtain the Base Factors \(f(\tilde{\theta}) \) and \(g(\tilde{\theta}) \).

2. To obtain the Scaling Factor \(h(\tilde{\theta}) = R \).

Based on the input parameters, the supplied functions (see Appendix 9) will automatically perform the required lookups, interpolations and calculations for \(h(\tilde{\theta}) = R \), including the constraints imposed on the margin ratio \(W \). Use of the tools noted in Appendix 9 is not mandatory.

Multi-dimensional interpolation is an iterative extension of the familiar two-dimensional linear interpolation for a discrete function \(V(x) \):
\[\hat{V}(x + \delta) = (1 - \zeta) \times V(x) + \zeta \times V(x_{k+1}) \]

and

\[\zeta = \frac{\delta}{x_{k+1} - x_k} \]

In the above formulation, \(\hat{V}(x) \) is assumed continuous and \(x_k \) and \(x_{k+1} \) are defined values (“nodes”) for \(V(x) \). By definition, \(x_k \leq (x_k + \delta) \leq x_{k+1} \) so that \(0 \leq \zeta \leq 1 \). In effect, multi-dimensional interpolation repeatedly applies simple linear interpolation one dimension at a time until a single value is obtained.

Multi-dimensional interpolation across all four dimensions is not required. However, simple linear interpolation for \(AV \div GV \) Ratio \((\phi) \) is mandatory. In this case, the company must choose nodes for the other three (3) dimensions according to the following rules:

<table>
<thead>
<tr>
<th>Risk Attribute (Dimension)</th>
<th>Node Determination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attained Age</td>
<td>Use next higher attained age.</td>
</tr>
<tr>
<td>Policy Duration</td>
<td>Use nearest.</td>
</tr>
<tr>
<td>MER Delta</td>
<td>Use nearest (capped at +100 & floored at –100 bps).</td>
</tr>
</tbody>
</table>

For example, if the actual policy/cell is attained age 62, policy duration 4.25 and MER Delta = +55 bps, the company should use the nodes defined by attained age 65, policy duration 3.5 and MER Delta = +100.

Table 2-7 provides an example of the fully interpolated results for a 5% Roll-up “Pro Rata” policy mapped to the Diversified Equity class (first row). While Table 2-7 does not demonstrate how to perform the multi-dimensional interpolation, it does show the required 16 nodes from the Base Factors. The margin offset is assumed to be 100 basis points.
Table 2-7: Base Factors for a 5% Rollup GMDB Policy, Diversified Equity

<table>
<thead>
<tr>
<th>Key</th>
<th>Age</th>
<th>Policy Dur</th>
<th>Policy Av/Gv</th>
<th>Mer (Bps)</th>
<th>Base Cost Factor</th>
<th>Base Margin Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTERPOLATED</td>
<td>62</td>
<td>4.25</td>
<td>0.80</td>
<td>265</td>
<td>0.15010</td>
<td>0.04491</td>
</tr>
<tr>
<td>12043121</td>
<td>60</td>
<td>3.5</td>
<td>0.75</td>
<td>250</td>
<td>0.14634</td>
<td>0.04815</td>
</tr>
<tr>
<td>12043122</td>
<td>60</td>
<td>3.5</td>
<td>0.75</td>
<td>350</td>
<td>0.15914</td>
<td>0.04511</td>
</tr>
<tr>
<td>12043131</td>
<td>60</td>
<td>3.5</td>
<td>1.00</td>
<td>250</td>
<td>0.10263</td>
<td>0.04365</td>
</tr>
<tr>
<td>12043132</td>
<td>60</td>
<td>3.5</td>
<td>1.00</td>
<td>350</td>
<td>0.11859</td>
<td>0.04139</td>
</tr>
<tr>
<td>12043221</td>
<td>60</td>
<td>6.5</td>
<td>0.75</td>
<td>250</td>
<td>0.12946</td>
<td>0.04807</td>
</tr>
<tr>
<td>12043222</td>
<td>60</td>
<td>6.5</td>
<td>0.75</td>
<td>350</td>
<td>0.14206</td>
<td>0.04511</td>
</tr>
<tr>
<td>12043231</td>
<td>60</td>
<td>6.5</td>
<td>1.00</td>
<td>250</td>
<td>0.08825</td>
<td>0.04349</td>
</tr>
<tr>
<td>12043232</td>
<td>60</td>
<td>6.5</td>
<td>1.00</td>
<td>350</td>
<td>0.10331</td>
<td>0.04129</td>
</tr>
<tr>
<td>12044121</td>
<td>65</td>
<td>3.5</td>
<td>0.75</td>
<td>250</td>
<td>0.18484</td>
<td>0.04319</td>
</tr>
<tr>
<td>12044122</td>
<td>65</td>
<td>3.5</td>
<td>0.75</td>
<td>350</td>
<td>0.19940</td>
<td>0.04074</td>
</tr>
<tr>
<td>12044131</td>
<td>65</td>
<td>3.5</td>
<td>1.00</td>
<td>250</td>
<td>0.12931</td>
<td>0.03944</td>
</tr>
<tr>
<td>12044132</td>
<td>65</td>
<td>3.5</td>
<td>1.00</td>
<td>350</td>
<td>0.14747</td>
<td>0.03757</td>
</tr>
<tr>
<td>12044221</td>
<td>65</td>
<td>6.5</td>
<td>0.75</td>
<td>250</td>
<td>0.16829</td>
<td>0.04313</td>
</tr>
<tr>
<td>12044222</td>
<td>65</td>
<td>6.5</td>
<td>0.75</td>
<td>350</td>
<td>0.18263</td>
<td>0.04072</td>
</tr>
<tr>
<td>12044231</td>
<td>65</td>
<td>6.5</td>
<td>1.00</td>
<td>250</td>
<td>0.11509</td>
<td>0.03934</td>
</tr>
<tr>
<td>12044232</td>
<td>65</td>
<td>6.5</td>
<td>1.00</td>
<td>350</td>
<td>0.13245</td>
<td>0.03751</td>
</tr>
</tbody>
</table>

The interpolations required to compute the Scaling Factor are slightly different from those needed for the Base Factors. Specifically, the user should not interpolate the intercept and slope terms for each surrounding node, but rather interpolate the Scaling Factors applicable to each of the nodes.

Table 2-8 provides an example of the Scaling Factor for the sample policy given earlier in Table 2-7 (i.e., a 5% Roll-up “Pro Rata” policy mapped to the Diversified Equity class) as well as the nodes used in the interpolation. The aggregate AV/GV for the product portfolio (i.e., all 5% Roll-up policies combined) is 0.75; hence, 90% of this value is 0.675 as shown under “Adjusted Product AV/GV”. As before, the margin offset is 100 basis points per annum.
<table>
<thead>
<tr>
<th>Key</th>
<th>Age</th>
<th>Policy Dur</th>
<th>Adjusted Product Av/Gv</th>
<th>Mer (Bps)</th>
<th>Intercept</th>
<th>Slope</th>
<th>Scaling Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTERPOLATED</td>
<td>62</td>
<td>4.25</td>
<td>0.675</td>
<td>265</td>
<td>n/a</td>
<td>n/a</td>
<td>0.871996</td>
</tr>
<tr>
<td>12043111</td>
<td>60</td>
<td>3.5</td>
<td>0.50</td>
<td>250</td>
<td>0.855724</td>
<td>0.092887</td>
<td>0.892879</td>
</tr>
<tr>
<td>12043112</td>
<td>60</td>
<td>3.5</td>
<td>0.50</td>
<td>350</td>
<td>0.855724</td>
<td>0.092887</td>
<td>0.882263</td>
</tr>
<tr>
<td>12043121</td>
<td>60</td>
<td>3.5</td>
<td>0.75</td>
<td>250</td>
<td>0.834207</td>
<td>0.078812</td>
<td>0.865732</td>
</tr>
<tr>
<td>12043122</td>
<td>60</td>
<td>3.5</td>
<td>0.75</td>
<td>350</td>
<td>0.834207</td>
<td>0.078812</td>
<td>0.856725</td>
</tr>
<tr>
<td>12043211</td>
<td>60</td>
<td>6.5</td>
<td>0.50</td>
<td>250</td>
<td>0.855724</td>
<td>0.092887</td>
<td>0.892879</td>
</tr>
<tr>
<td>12043212</td>
<td>60</td>
<td>6.5</td>
<td>0.50</td>
<td>350</td>
<td>0.855724</td>
<td>0.092887</td>
<td>0.882263</td>
</tr>
<tr>
<td>12043221</td>
<td>60</td>
<td>6.5</td>
<td>0.75</td>
<td>250</td>
<td>0.834207</td>
<td>0.078812</td>
<td>0.865732</td>
</tr>
<tr>
<td>12043222</td>
<td>60</td>
<td>6.5</td>
<td>0.75</td>
<td>350</td>
<td>0.834207</td>
<td>0.078812</td>
<td>0.856725</td>
</tr>
<tr>
<td>12044111</td>
<td>65</td>
<td>3.5</td>
<td>0.50</td>
<td>250</td>
<td>0.855724</td>
<td>0.092887</td>
<td>0.892879</td>
</tr>
<tr>
<td>12044112</td>
<td>65</td>
<td>3.5</td>
<td>0.50</td>
<td>350</td>
<td>0.855724</td>
<td>0.092887</td>
<td>0.882263</td>
</tr>
<tr>
<td>12044121</td>
<td>65</td>
<td>3.5</td>
<td>0.75</td>
<td>250</td>
<td>0.834207</td>
<td>0.078812</td>
<td>0.865732</td>
</tr>
<tr>
<td>12044122</td>
<td>65</td>
<td>3.5</td>
<td>0.75</td>
<td>350</td>
<td>0.834207</td>
<td>0.078812</td>
<td>0.856725</td>
</tr>
<tr>
<td>12044211</td>
<td>65</td>
<td>6.5</td>
<td>0.50</td>
<td>250</td>
<td>0.855724</td>
<td>0.092887</td>
<td>0.892879</td>
</tr>
<tr>
<td>12044212</td>
<td>65</td>
<td>6.5</td>
<td>0.50</td>
<td>350</td>
<td>0.855724</td>
<td>0.092887</td>
<td>0.882263</td>
</tr>
<tr>
<td>12044221</td>
<td>65</td>
<td>6.5</td>
<td>0.75</td>
<td>250</td>
<td>0.834207</td>
<td>0.078812</td>
<td>0.865732</td>
</tr>
<tr>
<td>12044222</td>
<td>65</td>
<td>6.5</td>
<td>0.75</td>
<td>350</td>
<td>0.834207</td>
<td>0.078812</td>
<td>0.856725</td>
</tr>
</tbody>
</table>

Adjustments to GC for Product Variations & Risk Mitigation/Transfer

In some cases, it may be necessary for the company to make adjustments to the published factors due to:

1. A variation in product form wherein the definition of the guaranteed benefit is materially different from those for which factors are available (see Table 2-9); and/or
2. A risk mitigation / management strategy that cannot be accommodated through a straight-forward and direct adjustment to the published values. Any adjustments to the published factors must be fully documented and supported through stochastic analysis modeling. Such analysis modeling may require stochastic simulations, but would not ordinarily be based on full in-force projections. Instead, a representative “model office” should be sufficient. In the absence of material changes to the product design, risk management program and Alternative Method (including the published factors), the company would not be expected to redo this analysis/modeling each year.

Note that minor variations in product design do not necessarily require additional effort. In some cases, it may be reasonable to use the factors/formulas for a different product form (e.g., for a “roll-up” GMDB policy near or beyond the maximum reset age or amount, the company should use the “return-of-premium” GMDB factors/formulas, possibly adjusting the guaranteed value to reflect further resets, if any). In other cases, the company might determine the RBC based on two different guarantee definitions and interpolate the results to obtain an appropriate value for the given policy/cell. Likewise, it may be possible to adjust the Alternative Method results for certain risk transfer arrangements without significant additional work (e.g., quota-share reinsurance without caps, floors or sliding scales would normally be reflected by a simple pro-rata adjustment to the “gross” GC results).

However, if the policy design is sufficiently different from those provided and/or the risk mitigation strategy is non-linear in its impact on the AAR, and there is no practical or obvious way to obtain a good result from the prescribed factors/formulas, the company must justify any adjustments or approximations by stochastic modeling. Notably this modeling need not be performed on the whole portfolio, but can be undertaken on an appropriate set of representative policies.

The remainder of this section suggests a process for adjusting the published “Cost” and “Margin Offset” factors due to a variation in product design (e.g., a “step-up” option at every 7th anniversary whereby the guaranteed value is reset to the account value, if higher). Note that the “Scaling Factors” (as determined by the slope and intercept terms in the factor table) would not be adjusted.

The steps for adjusting the published Cost and Margin Offset factors for product design variations are:

1. Select a policy design in the published tables that is similar to the product being valued. Execute cashflow projections using the documented assumptions (see Tables 2-9 and 2-10) and the pre-packaged scenarios from the prescribed generators for a set of representative cells (combinations of attained age, policy duration, asset class, AV/GV ratio and MER). These cells should correspond to nodes in the factor grid. Rank (order) the sample distribution of results for the present value of net cost. Determine those scenarios which comprise CTE(90).

6 Present value of net cost = PV[guaranteed benefit claims in excess of account value] – PV[margin offset]. The discounting includes cashflows in all future years (i.e., to the earlier of contract maturity and the end of the horizon).
2. Using the results from step 1., average the present value of cost for the CTE(90) scenarios and divide by the current guaranteed value. For a the J^{th} cell, denote this value by F_J. Similarly, average the present value of margin offset revenue for the same subset of scenarios and divide by account value. For the J^{th} cell, denote this value by G_J.

3. Extract the corresponding factors from the published grid. For each cell, calibrate to the published tables by defining a “model adjustment factor” (denoted by asterisk) separately for the “cost” and “margin offset” components:

$$F_J^* = \frac{f(\hat{\theta})}{\hat{F}_J} \quad \text{and} \quad G_J^* = \frac{g(\hat{\theta})}{\hat{G}_J}$$

4. Execute “product specific” cashflow projections using the documented assumptions and pre-packaged scenarios from the prescribed generators for the same set of representative cells. Here, the company should model the actual product design. Rank (order) the sample distribution of results for the present value of net cost. Determine those scenarios which comprise CTE(90).

5. Using the results from step 4., average the present value of cost for the CTE(90) scenarios and divide by the current guaranteed value. For a the J^{th} cell, denote this value by \bar{F}_J. Similarly, average the present value of margin offset revenue for the same subset of scenarios and divide by account value. For a the J^{th} cell, denote this value by \bar{G}_J.

6. To calculate the AAR for the specific product in question, the company should implement the Alternative Method as documented, but use $\bar{F}_J \times F_J^*$ in place of $f(\hat{\theta})$ and $\bar{G}_J \times G_J^*$ instead of $g(\hat{\theta})$. The company must use the “Scaling Factors” for the product evaluated in step 1. (i.e., the product used to calibrate the company’s cashflow model).
Assumptions for the Alternative Method Published GMDB Factors

This subsection reviews the model assumptions used to develop the Alternative Method factors. Each node in the factor grid is effectively the modeled result for a given “cell”.

Table 2-9: Model Assumptions & Product Characteristics

<table>
<thead>
<tr>
<th>Account Charges (MER)</th>
<th>Vary by fund class. See Table 2-10 later in this section.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base Margin Offset</td>
<td>100 basis points per annum</td>
</tr>
<tr>
<td>GMDB Description</td>
<td>1. ROP = return of premium ROP.</td>
</tr>
<tr>
<td></td>
<td>2. ROLL = 5% roll-up, capped at 2.5 × premium, frozen at age 80.</td>
</tr>
<tr>
<td></td>
<td>3. MAV = annual ratchet (maximum anniversary value), frozen at age 80.</td>
</tr>
<tr>
<td></td>
<td>4. HIGH = Higher of 5% roll-up and annual ratchet frozen at age 80.</td>
</tr>
<tr>
<td></td>
<td>5. EDB = ROP + 40% Enhanced Death Benefit (capped at 40% of deposit).</td>
</tr>
<tr>
<td>Adjustment to GMDB Upon Partial Withdrawal</td>
<td>“Pro-Rata by Market Value” and “Dollar-for-Dollar” are tested separately.</td>
</tr>
<tr>
<td>Surrender Charges</td>
<td>Ignored (i.e., zero). Reflected in the “CA” component of the AAR.</td>
</tr>
<tr>
<td>Single Premium / Deposit</td>
<td>$100,000. No future deposits; no intra-policy fund rebalancing.</td>
</tr>
<tr>
<td>Base Policy Lapse Rate</td>
<td>• Pro-rata by MV: 10% p.a. at all policy durations (before dynamics)</td>
</tr>
<tr>
<td></td>
<td>• Dollar-for-dollar: 2% p.a. at all policy durations (no dynamics)</td>
</tr>
<tr>
<td>Partial Withdrawals</td>
<td>• Pro-rata by MV: None (i.e., zero)</td>
</tr>
<tr>
<td></td>
<td>• Dollar-for-dollar: Flat 8% p.a. at all policy durations (as a % of AV). No dynamics or anti-selective behavior.</td>
</tr>
<tr>
<td>Mortality</td>
<td>100% of MGDB 94 ALB.</td>
</tr>
<tr>
<td>Gender /Age Distribution</td>
<td>100% male. Methodology accommodates different attained ages and policy durations. A 5-year age setback will be used for female annuitants.</td>
</tr>
<tr>
<td>Max. Annuity Age</td>
<td>All policies terminate at age 95.</td>
</tr>
<tr>
<td>Fixed Expenses, Annual Fees</td>
<td>Ignored (i.e., zero). Reflected in the “FE” component of the AAR.</td>
</tr>
<tr>
<td>Income Tax Rate</td>
<td>21.25%</td>
</tr>
</tbody>
</table>
Discount Rate

<table>
<thead>
<tr>
<th>Table 2-10: Account-Based Fund Charges (bps per annum)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asset Class / Fund</td>
</tr>
<tr>
<td>------------------------</td>
</tr>
<tr>
<td>Fixed Account</td>
</tr>
<tr>
<td>Money Market</td>
</tr>
<tr>
<td>Fixed Income (Bond)</td>
</tr>
<tr>
<td>Balanced</td>
</tr>
</tbody>
</table>

Dynamic Lapse Multiplier

(Applies only to policies where GMDB is adjusted “pro-rata by MV” upon withdrawal)

\[U = 1, L = 0.5, M = 1.25, D = 1.1 \]

- Applied to the ‘Base Policy Lapse Rate’ (not withdrawals).

Notes on GMDB Factor Development

- The roll-up is continuous (not simple interest, not stepped at each anniversary) and is applied to the previous roll-up guaranteed value (i.e., not the contract guaranteed value under HIGH).

- The Enhanced Death Benefit (“EDB”) is floored at zero. It pays out 40% of the gain in the policy upon death at time \(t \):

\[
B_t = \min \{0.40 \times \text{Deposit}, 0.40 \times \max (0, AV_t - \text{Deposit})\}. \tag{8}
\]

The test policy also has a 100% return-of-premium GMDB, but the EDB Alternative Factors will be net of the GMDB component. That is, the EDB factors are ‘stand-alone’ and applied in addition to the GMDB factors.

- The “Base Policy Lapse Rate” is the rate of policy termination (total surrenders). Policy terminations (surrenders) are assumed to occur throughout the policy year (not only on anniversaries).

- Partial withdrawals (if applicable) are assumed to occur at the end of each time period (quarterly).

- Account charges (“MER”) represent the total amount (annualized, in basis points) assessed against policyholder funds (e.g., sum of investment management fees, mortality and expense charges, risk premiums, policy/administrative fees, etc.). They are assumed to occur throughout the policy year (not only on anniversaries).
<table>
<thead>
<tr>
<th>Investment Type</th>
<th>Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diversified Equity</td>
<td>250</td>
</tr>
<tr>
<td>Diversified International Equity</td>
<td>250</td>
</tr>
<tr>
<td>Intermediate Risk Equity</td>
<td>265</td>
</tr>
<tr>
<td>Aggressive or Exotic Equity</td>
<td>275</td>
</tr>
</tbody>
</table>
Calculation Example

Continuing the previous example (see Tables 2-7 and 2-8) for a 5% Roll-up GMDB policy mapped to Diversified Equity, suppose we have the policy/product parameters as specified in Table 2-11.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deposit Value</td>
<td>$100.00</td>
<td>Total deposits adjusted for partial withdrawals.</td>
</tr>
<tr>
<td>Account Value</td>
<td>$98.43</td>
<td>Total account value at valuation date, in dollars.</td>
</tr>
<tr>
<td>GMDB</td>
<td>$123.04</td>
<td>Current guaranteed minimum death benefit, in dollars.</td>
</tr>
<tr>
<td>Attained Age</td>
<td>62</td>
<td>Attained age at the valuation date (in years).</td>
</tr>
<tr>
<td>Policy Duration</td>
<td>4.25</td>
<td>Policy duration at the valuation date (in years).</td>
</tr>
<tr>
<td>GV Adjustment</td>
<td>Pro-Rata</td>
<td>GMDB adjusted pro-rata by MV upon partial withdrawal.</td>
</tr>
<tr>
<td>Fund Class</td>
<td>Diversified Equity</td>
<td>Contract exposure mapped to Diversified Equity as per the Fund Categorization instructions in the section of this Appendix on Component GC.</td>
</tr>
<tr>
<td>MER</td>
<td>265</td>
<td>Total charge against policyholder funds (bps).</td>
</tr>
<tr>
<td>Product Code</td>
<td>2</td>
<td>Product Definition code as per lookup key in Table 4.</td>
</tr>
<tr>
<td>GV Adjust</td>
<td>0</td>
<td>GV Adjustment Upon Partial Withdrawal as per key in Table 2-4.</td>
</tr>
<tr>
<td>Fund Code</td>
<td>4</td>
<td>Fund Class code as per lookup key in Table 2-4.</td>
</tr>
<tr>
<td>Policy MV GV</td>
<td>0.800</td>
<td>Contract account value divided by GMDB.</td>
</tr>
<tr>
<td>Adj Product MV GV</td>
<td>0.675</td>
<td>90% of the aggregate AV/GV for the Product portfolio.</td>
</tr>
<tr>
<td>RC</td>
<td>150</td>
<td>Margin offset (basis points per annum).</td>
</tr>
</tbody>
</table>

Using the usual notation, $GC = GV \times f(\theta) - AV \times \beta(\theta) \times h(\theta)$.

$f(\theta) = 0.150099 = GetCostFactor(2, 0.4, 62, 4.25, 0.8, 265)$
\[g(\theta) = 0.067361 = \text{GetMarginFactor}(2, 0, 4, 62, 4.25, 0.8, 265, 150) \]

\[h(\theta) = 0.887663 = \text{GetScalingFactor}(2, 0, 4, 62, 4.25, 0.675, 265, 150) \]

Hence, \(GC = 12.58 = (123.04 \times 0.150099) - (98.43 \times 0.067361 \times 0.887663) \). As a normalized value, this quantity is 12.78% of account value, 10.23% of guaranteed value and 51.1% of the current net amount at risk (Net amount at risk = GV – AV).

Note that \(g(\theta) = \frac{\alpha}{100} \times g(\theta) = \frac{150}{100} \times 0.044907 \) where \(g(\theta) \) is “per 100 basis points” of available margin offset.